Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Marvin K. Harris x
Clear All Modify Search

Abstract

Resistance to pear psylla (Psylla pyricola Forester) in trees having P. ussuriensis Maxim. (I-65) lineage is shown to be present, genetically transmissable, and not linked with the poor horticultural characteristics of small size, poor tree vigor, grittiness of the fruit, and poor quality. Since both susceptible and resistant backcross seedlings were originally selected for resistance to fire blight, it appears that fire blight resistance and pear psylla resistance are inherited independently.

Open Access

Trials were established in Summer 2002 and 2003 to test the consequences of the application of a kaolin-based particle film (Surround WP, Engelhard Corp.) on gas exchange, nut quality, casebearer density and population of natural predators (insects and arachnids) on pecan (Carya illinoinensis, cv. `Pawnee') trees. Film application started immediately after bud break and was repeated every 7-10 days for seven (2002) or nine (2003) times during the season. On both years, treated trees frequently showed lower leaf temperature (up to 4 °C) than untreated trees. Leaf net assimilation rate, stomatal conductance and stem water potential were not affected by film application. Nut size and quality did not differ between the two treatments. In 2003, shellout (percentage of nut consisting of kernel) was in fact 54.2% and 55.5% for treated and control trees, respectively. Moreover, the two treatments yielded similar percentage of kernel crop grading as fancy, choice, standard and damaged. Similar were also the percentages of kernels that showed damage caused by stink bugs. Only on one date the number of adult yellow pecan aphids (Monelliopsis pecanis) counted on film-treated leaves was lower than in control leaves. In general, the density of common natural predators (lady beetles, green lacewings, spiders) of pecan pests did not differ between the two treatments; however, the number of green lacewing eggs was frequently lower on film-treated leaves. In film-treated trees the number of nutlets damaged by pecan nut casebearer (Acrobasis nuxvorella) was significantly higher than that observed on trees treated with conventional insecticide (24.2% infested nutlets vs. 9.3%, respectively) and did not differ from trees that did not receive either product (29.9%).

Free access

Trials were conducted during summer months of 2002 and 2003 to evaluate the effects of a kaolin-based particle film (Surround WP, Engelhard Corp.) on gas exchange, nut quality, casebearer density and population of natural enemies (insects and arachnids) on pecan (Carya illinoinensis `Pawnee') trees. Film application was repeated for seven (2002) or nine (2003) times during the growing season. In both years, treated trees showed lower leaf temperature (up to 4 °C) than untreated trees. During the warmest hours of the day, kaolin-treated leaves were generally 0 to 2 °C cooler than air temperatures, compared to 4 to 6 °C for control leaves. Leaf net assimilation rate, stomatal conductance and stem water potential were not affected by film application. Nut size and quality did not differ between the two treatments. Shellout (percentage of nut consisting of kernel) was not affected by treatment and averaged about 55%. Crop grade distribution (fancy, choice, standard, and damaged) was also similar among treatments in both years. In both years, numbers of green lacewing eggs was less on kaolin-treated compared to control leaves. The density of common natural enemies (lady beetles, green lacewings, spiders) of pecan pests did not differ between treatments. The average number of developing nuts damaged by pecan nut casebearer (Acrobasis nuxvorella Neunzig) was significantly higher in kaolin-sprayed trees (24.2%) compared to control trees sprayed with conventional insecticides (9.3%). The results suggest that kaolin-based particle film may not be a viable alternative to conventional methods of controlling pecan pests. Also, under adequate irrigation conditions, carbon assimilation, water relations and productivity may not benefit from kaolin particle film application.

Free access

Three-dimensional leaf and fruit distribution was studied in a 26-year-old `Success' pecan tree [Carya illinoinensis (Wangenh.) K. Koch]. The tree was typical of the trees in this orchard and typical of thousands of hectares of mature pecan trees growing in a crowded condition. There are fewer leaves and fruit in the lower and central canopy than in the rest of the tree. To obtain an adequate sample, measurements should be taken from branches arising at a height ≥4.75 m and from 1.9 m from the center of the tree trunk to the edge of the canopy around the trees. Fruit could be sampled from branches arising at ≥3.76 m from the ground and from 3.37 m from the center of the tree trunk to the edge of the canopy around the tree.

Free access

Long-established native tree populations reflect local adaptations. Representation of diverse populations in accessible ex situ collections that link information on phenotypic expression to information on spatial and temporal origination is the most efficient means of preserving and exploring genetic diversity, which is the foundation of breeding and crop improvement. Throughout North America, sympatric Carya species sharing the same ploidy level tend to hybridize, permitting gene flow that contributes to regional diversity and adaptation. The topographic isolation of many fragmented populations, some of which are small, places native Carya populations of United States, Mexico, and Asia in a vulnerable position and justifies systematic collection and characterization. The characterization of indigenous Mexican pecan and other Carya populations will facilitate use for rootstocks and scion breeding and will contribute to pecan culture. The Asian species, as a group, are not only geographically isolated from North American species, but also occur in disjunct, fragmented populations isolated from other Asian species. Section Sinocarya includes the members of the genus most vulnerable to genetic loss. With all species, recognition of utility based on characterization of ex situ collections may contribute to the establishment of in situ reserves. Global Carya genetic resources should be cooperatively collected, maintained, characterized, and developed. The integration of crop wild relatives into characterization and breeding efforts represents a challenging opportunity for both domestic and international cooperation. Genomic tools used on the accessible collections of the National Collection of Genetic Resources for Pecans and Hickories (NCGR-Carya) offer great potential to elucidate genetic adaptation in relation to geographic distribution. The greatest progress will be made by integrating the disciplines of genetics, botany, pathology, entomology, ecology, and horticulture into internationally cooperative efforts. International germplasm exchange is becoming increasingly complicated by a combination of protectionist policies and legitimate phytosanitary concerns. Cooperative international evaluation of in situ autochthonous germplasm provides a valuable safeguard to unintended pathogen exchange associated with certain forms of germplasm distribution, while enabling beneficial communal exploration and directed exchange. This is threatened by the “proprietary” focus on intellectual property. The greatest risk to the productive development of the pecan industry might well be a myopic focus on pecan production through the lens of past practice. The greatest limitation to pecan culture in the western United States is reduced water quantity and quality; in the eastern United States the challenge is disease susceptibility; and insufficient cold hardiness in the northern United States. The greatest benefit for the entire industry might be achieved by tree size reduction through both improved rootstocks and scions, which will improve both nut production and tree management, impacting all areas of culture. This achievement will likely necessitate incorporation of crop wild relatives in breeding, broad cooperation in the testing leading to selection, and development of improved methods linking phenotypic expression to genomic characterization. The development of a database to appropriately house information available to a diverse research community will facilitate cooperative research. The acquisition of funds to pursue development of those tools will require the support of the pecan industry, which in the United States, is regionally fragmented and focused on marketing rather than crop development.

Free access

Annual variation in fruiting by pecan [Carya illinoensis (Wangenh.) K. Koch] obtained from anecdotal records and state, district, county, and orchard data from Texas indicate exceptionally high synchronous fluctuations typically occurred every 34 years with a range of 2-7 years over the 66-year data base examined. Synchrony in fruit production was inversely related to the spatial distribution of pecans reflected in coefficients of variation ranging from about 60 at the state level to about 120 for two 10-ha orchards. These characteristics show that pecan exhibits roasting and that the species warrants further examination vis a vis interactions with nut feeders.

Free access

Nut count (NC), trunk circumference (TC), competition factor (CF), days from budbreak (DAY), and high or low crop year (YR) data were collected on 40 trees at three sites across Texas in 1985 and 1986, to create a model that would predict pecan [Carya illinoensis (Wangenh.) C. Koch] yield. The model developed predicted the natural logarithm of the total nuts on the tree [In(NUTS)]: In(NUTS) = 2.112 + [0.634 × In(NC)] + (0.00119 × TC) – (0.0701 × In(CF)) + (0.00639 × DAY) + (0.728 × YR). The equation accounts for 87% of the variation in yield. The model is not sufficiently accurate to predict individual tree yields well, but additional data show an ability to accurately predict average tree yields.

Free access