Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Martin P.N. Gent x
- Journal of the American Society for Horticultural Science x
Strawberry (Fragaria × ananassa Duchesn.) cultivars differ in response to removal date of row covers when they are used for winter protection and to accelerate fruit development and production. In 1986-87 and 1987-88, eight cultivars were overwintered under either spun-bonded polypropylene row cover or under straw. The straw was removed from control plots in late March. Row covers were removed on four dates beginning in late March and separated by about 2-week intervals. The time of flowering, fruit set, and fruit ripening was advanced in direct relation to the time that row covers remained over plants in spring. The differences in time of fruit ripening were less than those of time of flowering, however. The mid-harvest date was advanced as much as 8 days for `Earlidawn' and `Midway', but only 4 days for `Redchief' and `Scott'. Weight per fruit and percentage of marketable fruit were reduced when plants remained under row cover until mid-May. This effect was most noticeable for `Earlidawn', `Guardian', and `Redchief'. The fruit quality of `Midway' and `Jerseybelle' was not significantly affected by date of row cover removal. These cultivar-specific responses were probably not related to the stage of fruit development when row covers were removed, as both early and late-flowering cultivars were sensitive (and insensitive) to the date of row cover removal.
Exudation of organic acids by roots has been implicated in uptake of minerals from soil. Three cultivars within each of two subspecies of summer squash (Cucurbita pepo ssp. ovifera D. S. Decker var. ovifera and C. pepo ssp. pepo var. pepo) were grown in the field. Plants of ssp. pepo had higher concentrations of K, P, and Zn than those of ssp. ovifera. These same cultivars were grown under P sufficient and depleted conditions in hydroponics, to measure exudation of organic acids from roots. When grown in hydroponics, tissues of ssp. ovifera had similar or higher concentrations of nutrients than ssp. pepo. Therefore, differences in tissue composition of field-grown plants are likely due to differences in nutrient uptake ability, not inherent differences in tissue composition between subspecies. Phosphorus nutrition played a significant role in exudation of organic acids into the hydroponics solution. For both subspecies, P depletion resulted in exudation of more citric and succinic acid, and less oxalic and tartaric acid. Under P depletion, ssp. pepo exuded more citric acid than ssp. ovifera. When soil was eluted with solution containing root exudates, the exudates from ssp. pepo eluted more K, Mg, Fe, and Zn than did those from ssp. ovifera. Among subspecies of C. pepo, exudation of organic acids, particularly exudation of citric acid in response to P depletion, is associated with the plant's ability to accumulate more inorganic nutrients when grown in the field.