Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Mark W. Rieger x
Clear All Modify Search
Free access

Ganesh R. Panta, Mark W. Rieger and Lisa J. Rowland

The blueberry industry experiences significant losses every year due to environmental factors with a dehydrative component, such as drought and freezing stress. In a recent survey of blueberry research and extension scientists in the United States, lack of cold hardiness and susceptibility to spring frosts were identified as the most important genetic limitations of current cultivars. For these reasons, cloning and characterization of expression of dehydration-responsive genes (dehydrins) have been ongoing in our laboratory. To date, one full-length (2.0 kb bbdhn1 gene) and four partial-length dehydrin cDNAs have been cloned and sequenced. Very high homology at the DNA and protein levels were found among the blueberry dehydrin clones, particularly at the 3' ends. From DNA blots, it appears that blueberry dehydrins are encoded by about three genes with high homology to the full-length 2.0 kb bbdhn1 cDNA clone and a few other less related genes. The 2.0 kb bbdhn1 gene was mapped in a blueberry population segregating for cold hardiness and chilling requirement. Expression studies indicated that dehydrins are induced by cold and drought stress. In general, dehydrins were induced in all organs examined in response to cold stress, including floral buds, leaves, stems, and roots. Under drought conditions, dehydrins were induced primarily in stems and their levels declined in roots. Some of the induced dehydrins were the same for drought and cold stress, whereas others were unique to a given stress. Levels of dehydrin accumulation correlated positively with cold hardiness; however, levels of dehydrins did not correspond precisely to the degree of drought avoidance.

Free access

Richard T. Olsen, John M. Ruter and Mark W. Rieger

Illiciums, or star-anises, have increased in popularity in the nursery and landscape industries. However, confusion exists as to which taxa are tolerant of high light intensities during production and subsequent establishment in the landscape. We investigated the effect of two light intensity treatments, 45% and 100% full sunlight, on gas-exchange parameters of five Illicium taxa: Illicium anisatum L., I. floridanum Ellis. `Pebblebrook', I. henryi Diels., I. lanceolatum A.C. Sm., and I. parviflorum Michx. Ex. Vent. `Forest Green'. Light-response curves were determined for individual leaves, and mean response parameters calculated. Chlorophyll and total carotenoids were analyzed after extraction in acetone, with total chlorophyll also estimated with a SPAD chlorophyll meter. In general, highest rates of CO2 assimilation (Amax) and lowest rates of dark respiration (Rd) were found in the 45% light treatment for all taxa. Both Illicium anisatum and I. floridanum `Pebblebrook' had substantial reductions in Amax in 100% light, 94% and 81% respectively, compared to plants grown in the 45% light treatment. Illicium henryi failed to survive the 100% light treatment. Illicium lanceolatum and I. parviflorum `Forest Green' were least affected by the 100% light treatment. Severe photooxidative bleaching was noted and confirmed by SPAD and pigment data, although SPAD readings were a poor predictor of total chlorophyll. For taxa of Illicium in our study, photosynthetic gas-exchange parameters and foliage pigment characteristics were improved in the low light treatment, suggesting optimal growth occurs in shaded conditions.

Free access

Jeffrey H. Gillman, Mark W. Rieger, Michael A. Dirr and S. Kristine Braman

Two experiments were conducted to determine the effect of drought stress on the susceptibility of Buddleia davidii Franch. `Pink Delight' to the two-spotted spider mite (Tetranychus urticae Koch). In the first experiment, drought stress was imposed by withholding water until predawn xylem pressure potential fell below -1 MPa. Shoot growth was 75% less in drought-stressed than in nonstressed plants. Mite population densities were not affected, but noninfested leaf area was 14% higher, and degree of mite damage was lower, in nonstressed plants. Evidently, the greater amount of new growth in nonstressed plants leads to lower spider mite densities by diluting populations. In a second experiment, nonstressed B. davidii `Pink Delight' plants were watered every 1 to 2 days and drought-stressed plants were watered every 3 days. Spider mite populations were monitored by sampling newly expanded and mature foliage. Mite populations on mature foliage were not affected by stress, but stressed plants grew less and had larger spider mite populations on their newly expanded foliage than did nonstressed plants.