Search Results
You are looking at 1 - 10 of 19 items for
- Author or Editor: Mark A. Ritenour x
The trunk diameter of ‘Valencia’ sweet orange trees tested with seven insect control strategies was measured annually for the first 5 years after planting. Yield data (marketable fruit per tree) were collected after the fourth and fifth years. The insect control treatments were Admire (imidacloprid) applied at 12, 6, 3, or 2-month intervals; Temik (aldicarb) applied annually; Meta-Systox-R (oxydemeton-methyl) applied annually; or no insect control. Trunk diameter was significantly increased by Temik treatment at 1 and 2 years after planting. Six annual applications of Admire (at 2-month intervals) significantly increased trunk diameter 2 years after planting. None of the other treatments affected trunk diameters compared with the control. There were no trunk diameter differences among treatments at 3, 4, or 5 years after planting. Both Temik applied annually and Admire applied every other month or every 3 months significantly increased yield.
Heat treatments and exposure to elevated CO2 are known to reduce the incidence of chilling injury on grapefruit. In the current study, `Marsh' grapefruit (Citrus paradisi Macf.) were harvested on 17 Jan. or 22 Mar. 1996 and exposed to hot water (HW) dips (48 °C for 120 minutes) or exposed to controlled atmosphere (CA) of 10% or 16% CO2 during the first 3 weeks of an 8-week cold storage period (4.5 °C) to test their effects on the development of peel pitting (i.e., chilling injury) and proline and other compositional changes of the peel and juice. All HW and CA treatments from both harvests greatly reduced the development of peel pitting compared to the control. These treatments were also associated with lower average proline levels in the flavedo during storage. This suggests that HW and elevated CO2 may reduce chilling-induced peel pitting by facilitating proline metabolism in grapefruit flavedo tissue. HW and CA treatments resulted in higher peel total soluble and nonreducing sugar levels, but effects on peel reducing sugar and free amino acid concentrations were not consistent. In the juice, HW reduced titratable acidity (TA) concentrations while CA tended to increase both TA and ascorbic acid concentrations. Compared to the control, CA resulted in a slight decrease in total soluble solids during storage, while the effect of HW was inconsistent.
Quaternary ammonia (QA) has been used on equipment and fruit bins in Florida to reduce the risk of spreading citrus canker. This study was initiated to understand the cause of a previously unknown peel injury believed to be associated with QA residues. Symptoms of QA injury on `Marsh' grapefruit (Citrus paradisi) usually developed within 24 to 36 h of contact with QA and ranged in severity from very slight discoloration to severe, dark brown, necrotic peel tissue that collapsed to form large sunken areas. Placing fruit in 10 mL (0.34 floz) of ≥100 mg·L-1 (ppm) fresh QA solution caused moderate to severe peel injury. Drying the QA solutions on polystyrene petri dishes and then redissolving the residue with 10 mL deionized water before fruit contact resulted in essentially the same degree of peel injury as contact with fresh QA solutions. Peel injury on early (November) or late-season (April) grapefruit also occurred when fruit were placed on a thin film of QA solution left on polystyrene petri dishes after dipping the dishes in ≥300 mg·L-1 QA solutions or if fruit themselves were dipped in QA solutions ≥500 mg·L-1. No significant peel injury occurred when dipping solutions contained only water with 200 mg·L-1 chlorine, 0.025% (v/v) Triton N-101, or a combination of both.
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa (synonym Guignardia citricarpa). CBS causes fruit lesions and significant yield loss in all citrus (Citrus) species. The most distinguishing CBS symptom is called hard spot, which is a circular lesion with gray tissue at the center surrounded by a black margin. The spectral characteristic of CBS lesions was investigated and compared with the spectral signature of healthy fruit tissue to determine the best distinguishing wave band. Healthy and CBS-affected samples presented similar reflectance below 500 nm and above 900 nm. However, healthy samples reflected more light between 500 and 900 nm, especially within the visible band. Also, spectral reflectance of the same symptomatic lesion was acquired six times over a 2-month period to determine the variation of symptom’s spectral signatures over time after being harvested. A two-sample t test was employed to compare each pair of consecutive repetitions. The results showed that the spectral signature of the CBS lesion did not change significantly over 2 months. The wavelengths between 587 and 589 nm were identified as the distinguishing band to develop a monochrome vision–based sensor for CBS diagnosis. A support vector machine (SVM) classifier was trained using the spectral reflectance data at the selected bands to identify CBS-affected samples in each repetition. The overall CBS detection accuracies varied between 93.3% and 94.6%.
Population density of citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), was monitored in a Florida citrus grove for 5 years by scouting weekly for larval-induced mines (leafminer-created tunnels in the leaves) in a replicated citrus plot treated with seven insect control regimes: Admire (imidacloprid) applied at 12, 6, 3, or 2-month intervals; Temik (aldicarb) applied annually; Metasystox-R (oxydemeton-methyl) applied annually; or no insect control. Leafminer populations were highest during the warmer months (April to September) and lowest during the cooler months (November to March). Populations peaked during June in all 5 years monitored. Trees treated with Temik or Metasystox-R had the same number of mines as the untreated controls. A biannual treatment with Admire reduced leafminer damage (number of mines) all 5 years compared with the controls. Additional Admire applications further reduced damage during some, but not all, years. A single application of Admire significantly reduced mines in 3 of the 5 years.
Previous research showed that mature green tomato fruit dipped 1 to 4 min in a 1% CaCl2 solutions before storage had significantly increased peel calcium content and reduced postharvest decay. The present experiments, conducted over 3-day periods (reps), evaluate treatment effectiveness under commercial packinghouse conditions. Three cartons of 5 × 6 sized mature green `FL 47' tomatoes were collected from the line (control). CaCl2 was then added to the packinghouse 15,142-L dump tank to a concentration of 1% before more fruit were run through the line and three additional cartons collected. The cycle was repeated after bringing the concentration in the dump tank up to 2% CaCl2. After storage for ≤24 days at 20 °C, postharvest decay was significantly reduced in fruit receiving the 2% CaCl2 treatment. Calcium content in the tomato peel tended to increase with each successively higher CaCl2 treatment, but differences were nonsignificant. Laboratory tests showed Rhizopus more affected by 3% CaCl2, while Alternaria was affected by 2% and 3% CaCl2 solutions. Results were recorded as colony diameter, but colony morphology and sporulation were also affected. Inoculation studies of tomatoes dipped in 1% CaCl2 after wounding with Rhizopus or Alternaria showed better decay control when compared to treating before wounding.
Since the first occurrence of Huanglongbing (HLB) in the Florida commercial citrus industry in 2004, fruit yield and yield components of HLB-affected citrus have declined in endemically affected citrus tree groves. Optimal fertilization is thus critical for improving tree performance because nutrients are vital for tree growth and development, and play a significant role in tree disease resistance against various biotic and abiotic stresses. The objective of the current study was to determine whether leaf nutrient concentration, tree growth, yield, and postharvest quality of HLB-affected citrus trees were improved by the split application of nutrients. The four micronutrient application rates were used as fixed factors and the three nitrogen (N) rates were used as random factors for leaf nutrient analyses, tree growth, fruit yield, and postharvest analyses. Significant leaf manganese (Mn) and zinc (Zn) concentrations were detected when trees received foliar and soil-applied micronutrients regardless of the N rates. There was a strong regression analysis of leaf Mn and Zn nutrient concentration and nutrient rates with R2 : 0.61 and 0.59, respectively. As a result, a significant leaf area index associated with foliar and soil-applied micronutrient rates had a positive correlation with leaf area index and soil pH with R2 : 0.58 and 0.63 during the spring and summer seasons, respectively. Trees that received a moderate (224 kg·ha−1) N rate showed the least fruit decay percentage and total soluble solids (TSS) of 8% more than the lowest (168 kg·ha−1) and highest (280 kg·ha−1) N rates, even though fruit yield variations were barely detected as these micronutrients promoted vegetative growth. Moreover, the TSS to titratable acidity (TA) ratio of foliar and soil-applied micronutrient-treated trees showed 2% and 7% greater values than the foliar-only treated and control trees, respectively. Although micronutrients exacerbated stem-end rind breakdown (SERB), these nutrients significantly improved fruit storage when the fruits were stored for extended periods (8–11 weeks). Thus, moderate N rate, foliar (1×), and soil-applied (1×) micronutrient treatments improved tree growth, fruit postharvest, and fruit storage characteristics.
This study was undertaken to determine if endogenous IAA content and axillary bud development correlate with phenylalanine ammonia-lyase (PAL) induction and russet spotting (RS) susceptibility among RS susceptible and resistant cultivars of Iceberg lettuce (Lactuca sativa L.). Final levels of ethylene-induced PAL activity and RS development were highly correlated among cultivars, field conditions, and harvest dates. Harvested Iceberg lettuce midribs contained relatively low amounts of free IAA (maximum of 5.2 ng·g-1 fresh weight). There was poor correlation between free IAA content in lettuce leaf midribs and final RS development among all cultivars, growing conditions, and harvest dates. Axillary bud development, as measured by the number of visible buds per head, bud weight, or bud length, were not significantly correlated with final RS development or midrib IAA content. Cultivars with higher initial free IAA content lost much of their IAA after 8 days storage at 5C in air ± ethylene.
Up to three hurricanes (Charley, Frances, and Jeanne) passed over the same citrus-producing areas of Florida in August and September 2004. In October 2005, hurricane Wilma also passed over South Florida. We began evaluating citrus tree recovery in four commercial groves (red and white grapefruit, and `Murcott' tangerine) following the 2004 hurricanes to determine how quickly commercial groves recover following such catastrophic events. We previously reported that, among other things, even branches formed after the last 2004 hurricane matured sufficiently to flower the following spring, but to a lesser extent than older shoots. Here, we report hurricane effects on tree yield, fruit quality, and shelf life. Fruit loss was dramatic following the 2004 hurricanes (>90%). Fruit loss was also substantial following hurricane Wilma, with `Murcott' yields reduced 18% and grapefruit yields reduced 58%-65%. However, in comparison to 2003 pre-hurricane yields, yields following hurricane Wilma declined only 9% for `Murcott,' and 26%-40% for grapefruit. These yield reductions are less than the fruit lost due to the present year's hurricane. Therefore, the citrus trees studied demonstrated tremendous resilience and, if not for another hurricane the following year, would have likely exceeded pre-hurricane yields only 1 year after the devastating 2004 hurricanes. Effects of the hurricanes on harvested fruit quality and shelf life will also be discussed.
Citrus black spot (CBS), caused by Guignardia citricarpa, is a fungal disease that was first described in Australia in the 1890s and has since been discovered in Southwest Florida in 2010. The current study evaluated the effects of hot water treatments on mycelial growth of G. citricarpa in vitro and also evaluated postharvest hot-water dips and fungicide treatments on CBS development on ‘Valencia’ oranges. In vitro exposure to 56 °C for 120 seconds, 59 °C for 60 seconds, or 62 °C for 30 seconds suppressed mycelial growth of all three G. citricarpa isolates by >30%. These treatments did not significantly reduce disease incidence or severity of CBS lesion development on whole ‘Valencia’ oranges from CBS-infected trees when the fruit already had visible CBS symptoms before treatment. On asymptomatic fruit, while the treatments did not significantly reduce the incidence of CBS lesion development, fruit dipped in 56 °C water for 120 seconds significantly reduced disease severity after 2 weeks of storage compared with the control. None of the treatments caused peel scalding or fruit quality deterioration. Postharvest application of azoxystrobin, imazalil, or thiabendazole significantly reduced CBS disease severity on fruit that were asymptomatic at harvest, but did not affect disease incidence. These fungicides were not effective on fruit harvested later in the season (April), possibly because most lesion expression had already occurred before harvest, with little left to develop after harvest. On fruit showing CBS symptoms at harvest, postharvest fungicide treatments did not significantly affect disease incidence or severity after storage. Heating the fungicide solutions did not significantly improve fungicide effectiveness. These results demonstrated that fungicide azoxystrobin, imazalil, or thiabendazole could reduce CBS severity, but not incidence, on orange fruit that are still asymptomatic at harvest.