Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: María Herrero x
Clear All Modify Search
Free access

Javier Sanzol and Maria Herrero

Most pear (Pyrus communis L.) cultivars are impaired to set fruit under self-pollination, because self-fertilization is prevented by a gametophytic self-incompatibility system. However, accumulated information in this species shows that often for a same cultivar, after self-pollination, a variable response in fruit set can be obtained in different years or growing conditions. In this work, we characterize self-incompatibility and self-fruitfulness in ‘Agua de Aranjuez’, the main Spanish pear cultivar, which also shows a variable response to self-pollination. Two years with a different fruit setting response after self-pollination, one with no fruit set and the other with a moderate fruit set, were compared for parthenocarpic fruit development and for pollen tube performance. Results show that in both years, this cultivar behaves as self-incompatible with absence of parthenocarpy. In selfed flowers, most pollen tubes are arrested in the upper half of the style, although in a small proportion of the styles, a pollen tube can reach the base of the style and eventually effect fertilization. Self-fertilization, although occurring at a low level, can explain the fruit set levels obtained under self-pollination given that flowers with just one fertilized ovule are able to set fruit. This behavior could explain confusing results about self-fruitfulness in ‘Agua de Aranjuez’ and other pear cultivars.

Free access

Maria Victoria González, Manuel Coque and Maria Herrero

The effective pollination period was determined in kiwifruit [Actinidia deliciosa (Chev.) Liang and Fergusonl and the factors affecting it were evaluated. The effective pollination period, measured as the capability to set fruit after hand-pollinating flowers of different ages, was 4 days; 5 days after anthesis fruit set decreased and 2 days later it was nil. Pollen tube growth did not appear to he a limiting factor since pollen tubes grew quickly and reached the base of the style 2 days after pollination and reached the ovules 1 day later. Ovules appeared viable for the 7 days following anthesis, and visibly degenerated within the following 3 days. Stigmatic receptivity was determined by the ability to sustain pollen germination after hand pollinating flowers of different ages. The duration of stigmatic receptivity closely fit the effective pollination period determined through fruit set. Thus, it appears that stigma receptivity is the main factor responsible for the short effective pollination period.

Free access

Javier Sanzol, Pilar Rallo and María Herrero

Apples and pears are fruit crops particularly susceptible to cropping irregularities. A strong relationship has been observed between the effective pollination period (EPP) and the general cropping of the orchard. The EPP concept has also been proven to be a useful parameter to establish a relationship between the variation in the reproductive process and cropping behaviors. For apples and pears, a slow pollen tube growth has been shown to be the main limiting factor of the EPP in the traditional cooler temperate cultivation regions. However, while higher temperatures speed up the pollen tube growth, the expansion of these crops into warmer areas often results in failures of fruit set. Thus, with the aim to ascertain the main limiting factor responsible for fruit set failures in Mediterranean conditions we have evaluated the EPP for two consecutive years in `Agua de Aranjuez' pear, the main Spanish cultivar, by studying the stigmatic receptivity, pollen tube kinetics, and ovule development. Complete flower fertility was maintained for just 2 days after anthesis in both years. Pollen tube kinetics and ovule degeneration do not appear to limit flower receptivity. However, the stigmatic receptivity expressed as flowers with at least one receptive stigma, closely matches the duration of the EPP evaluated from fruit set experiments. This was consistent over the 2 years of experiments, in spite of the differences recorded in the EPP, suggesting that stigmatic receptivity is clearly the limiting factor of flower receptivity. This is the first report for stigmatic receptivity limiting the EPP in pears and suggests that stigmatic receptivity could be an important factor limiting pear flower receptivity and hence cropping performance under warmer conditions.

Free access

Gaetano Distefano, Giuseppina Las Casas, Stefano La Malfa, Alessandra Gentile, Eugenio Tribulato and Maria Herrero

Seedlessness is an important trait in the evaluation of commercial mandarin for fresh consumption. However, in the last decade, the presence of seeds in fruit of cultivars considered as seedless has become a problem in different citrus-growing areas because the commercial value is depreciated. Seeds have appeared concomitantly with the introduction of new cultivars that appear to be cross-compatible. To overcome this problem, different strategies have been explored, but a definitive answer is still elusive. The search for alternatives contrasts with how little is known about the basis of the problem: the pollen-pistil incompatibility reaction in mandarin, and the intercompatibility relationship between different cultivars. In this work, we characterized the pollen-pistil incompatibility in the two commonly grown mandarin cultivars Fortune and Nova, and evaluated the intercompatibility relationship between six cultivars with different genetic origins; these cultivars included Fortune (Citrus clementina Hort. ex Tan. × Citrus reticulata Blanco), Nova [(Citrus paradisi Macf. × C. reticulata) × C. clementina), Comune Clementine (C. clementina), Avana apireno (C. reticulata), Primosole (Citrus unshiu Marcov. × C. reticulata), and Simeto (C. unshiu × Citrus deliciosa Ten.). Following the controlled hand pollination in the field, we evaluated pollen tube performance after self- and cross-pollination, as well as intercultivar compatibility by observing pollen tube growth. The results show the self-incompatibility of these cultivars with the pollen tube having been arrested in the style, which explains their seedless condition when planted in solid blocks. The study of intercompatibility indicates a different pollen tube behavior depending on the genotype, as well as on the cross combinations. These results provide a basis to evaluate self- and intercompatibility in citrus, and the effect of close planting of some cultivars.