Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Marcos David Ferreira x
A portable wiltmeter instrument to estimate leaf turgor pressure according to an adaptation of the flattening method was developed. In the instrument, a flexible inflating membrane presses the leaf against a flattening plate having small orifices surrounded by a finely engraved network of obtuse indentations through which air flow is delivered. During a measurement, as the compression builds up, the leaf is progressively molded against the flattening plate, and as a consequence, the air flow (x) crossing the plate is reduced toward zero. The smallest leaf compression (p0 ) that blocks the air passage is an estimate of the leaf turgor. Wiltmeter measurements were compared with pressure probe measurements of cell turgor pressure in detached leaves of lettuce (Lactuca sativa L.), kale (Brassica oleracea L. var. Acephala), and chicory (Chichorium endivia L.), which were allowed to suffer diverse levels of wilting caused by transpiration. Such observed wiltmeter readings were a little lower than the cell turgor pressure measured with a pressure probe; the regression coefficients between these methods were: 1.156 for lettuce, 1.13 for kale, and 1.036 for chicory. This portable quantitative procedure to measure leaf firmness has potentially valuable applications related to postharvest and field plant physiology studies.
Coatings are generally applied to fruit as microemulsions, but nanoemulsions are still experimental. ‘Nova’ mandarins (Citrus reticulata) were coated with shellac or carnauba (Copernica cerifera) microemulsions or an experimental carnauba nanoemulsion; these were compared with an uncoated control during storage for 7 days at 20 °C. Coatings were also tested on ‘Unique’ tangors (C. reticulata × C. sinensis) stored for 14 days at 10 °C followed by a simulated marketing period of 7 days at 20 °C. Fruit quality evaluations included weight loss, gloss, soluble solids (SS), titratable acidity (TA), pH, SS/TA ratio, internal CO2, O2, fruit juice ethanol, and other aroma volatile content. Sensory visual shine and tangerine (C. reticulata) flavor rank tests after storage were conducted, followed by an off-flavor rating. The carnauba waxes resulted in less weight loss compared with the uncoated control and shellac coating during both experiments. There were no differences in gloss measurements of ‘Nova’ mandarins; however, shellac-coated fruit ranked highest for shine in a sensory test. For ‘Unique’ tangors, initially, shellac showed the highest gloss (shine) measurement; however, at the end of storage, the nanoemulsion exhibited the highest gloss, although it was not different from that of the microemulsion. Similarly, after storage, the nanoemulsion ranked highest for visual shine, although it was not different from that of the microemulsion. There were only minor differences in SS, TA, pH, and SS/TA among treatments. The internal CO2 gas concentration and juice ethanol content generally increased and internal O2 decreased during storage. The highest levels of CO2 and ethanol were found for the shellac treatment, as was the lowest O2, indicating anaerobic respiration. There were only minor differences among the other coating treatments; however, they were only sometimes different from those of the control, which generally had the highest O2, lowest CO2, and lowest ethanol. Shellac and the carnauba microemulsion also altered the volatile profile more than the control and the nanoemulsion did, especially for ‘Unique’ tangors. For ‘Unique’ tangors, the control and nanoemulsion ranked highest for tangerine flavor and had the least off-flavor at the end of storage. Among the coatings tested, the carnauba emulsions demonstrated less water loss, imparted more sustainable gloss, and caused less ethanol production than shellac, with the nanoemulsion exhibiting higher gloss measurements, less modifications of the atmosphere and volatile profile, and, consequently, better flavor compared with the microemulsion.