Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Marcellus Washington x
Clear All Modify Search

Increased broccoli production in the eastern United States necessitates the exploration of novel concepts to improve weed management in this region. Currently, there are minimal selective postemergent herbicide options available for broccoli growers in the southeastern United States. Research was conducted to determine if bentazon, an effective nutsedge herbicide, could be used safely for broccoli when tank-mixed with chelated iron in both greenhouse and field settings. Initial greenhouse screens in Charleston, SC, demonstrated that when 224 g⋅ha−1 active ingredient of chelated iron was tank-mixed with bentazon, a reduction in injury occurred in most of the cultivars that were evaluated. However, based on injury ratings, yield parameters, and broccoli quality observed in the field, it appears that the applications of chelated iron yielded no positive effects. Furthermore, for some of the broccoli cultivars it appeared to exacerbate bentazon injury in the field.

Open Access

Root traits are an important component for productive plant performance. Roots offer immediate absorptive surfaces for water and nutrient acquisition and are thus critical to crop growth and response to biotic and abiotic stresses. In addition, roots can provide the first line of defense against soilborne pathogens. Watermelon crop performance is often challenged by inclement weather and environmental factors. A resilient root system can support the watermelon crop’s performance across a diverse range of production conditions. In this study, 335 four-day-old watermelon (Citrullus spp.) seedlings were evaluated for total root length, average root diameter, total root surface area, and total root volume. Total root length varied from 8.78 to 181 cm (20.6-fold variation), total surface area varied from 2 to 35.5 cm2, and average root diameter and total root volume had an 8- and 29.5-fold variation, respectively. Genotypes PI 195927 (Citrullus colocynthis) and PI 674448 (Citrullus amarus) had the largest total root length values. Accessions PI 674448 and PI 494817 (C. amarus) had the largest total root surface area means. Watermelon cultivars (Citrullus lanatus) had a relatively smaller root system and significantly fewer fibrous roots when compared with the roots of the other Citrullus spp. Positive genetic correlations were identified among total root length, total root surface area, and total root volume. This genetic information will be useful in future breeding efforts to select for multiple root architecture traits in watermelon. Germplasm identified in this study that exhibit superior root traits can be used as parental choices to improve watermelon for root traits.

Open Access