Search Results
You are looking at 1 - 10 of 92 items for
- Author or Editor: Marc van Iersel x
Transplanting often causes root damage, and rapid root growth following transplanting may help to minimize the effects of transplant shock. The objective of this study was to determine the effects of NAA and IAA on posttransplant growth of vinca (Catharanthus roseus L.). Bare-root seedlings were germinated in a peat-based growing mix and transplanted into diatomaceous earth 10 days after seeding. Immediately after transplanting, seedlings were drenched with several concentrations of IAA or NAA (62.5 mL/plant). Both auxins increased posttransplant root and shoot growth, but the response was dose-dependent. The maximum growth occurred at concentrations of 10 mg·L-1 (IAA) or 0.1 mg·L-1 (NAA). The growth-stimulating effect of these auxins decreased at higher rates and NAA was highly toxic at 100 mg·L-1, killing most of the plants. Unlike the growth of bare-root seedlings, plug seedling growth was not stimulated by drenching with NAA solutions. These results show that auxins have the ability to stimulate posttransplant growth of vinca, but their effects may depend on the application method, rate, and timing, and transplanting method. Chemical names used: 1-naphthaleneacetic acid (NAA); 1-indole-3-acetic acid (IAA).
Ebb- and-flow irrigation is an economically attractive subirrigation method that reduces labor costs and eliminates runoff from greenhouses. The effects of fertilizer concentration on growth of subirrigated pansy (Viola ×wittrockiana Gam.) and the leachate electrical conductivity (EC) and pH were quantified, using two growing media. Leachate EC increased as the EC of the fertilizer solution increased from 0.6 to 3.6 dS·m–1 (70 to 530 mg·L–1 N). The leachate EC was fairly constant over time when the EC of the fertilizer solution was 0.6 dS·m–1, while it increased throughout the experiment at higher fertilizer concentrations. MetroMix 300 leachate consistently had a higher EC than did MetroMix 500. Leachate pH of both growing media was similar throughout the growing season. The pH decreased over time and was lower with higher fertilizer concentrations. Optimal plant growth occurred with a fertilizer EC of 1.2 or 1.8 dS·m–1, and a leachate EC between 1.5 and 4 dS·m–1. Increasing the concentration of the fertilizer solution resulted in increased shoot tissue levels of P and Mn and decreased tissue levels of K, Mg, and Na. The results of this study indicate that pansy is not very sensitive to the EC of the growing medium and can be grown successfully in a closed subirrigation system.
Poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch) were grown in pots filled with 1.5 L of soilless growing medium and subirrigated daily with a fertilizer solution containing N at 210 mg·L-1 [electrical conductivity (EC) = 1.5 dS·m-1] for 128 days. After production, plants were placed in a whole-plant photosynthesis system and the effects of applying different volumes of water (0, 0.75, 1.5, and 3 L) to the top of the pots were quantified. Leaching with 0.75, 1.5, or 3 L of water reduced the EC in the top and middle layers of the growing medium. Applications of 0.75 or 1.5 L of water significantly increased the EC in the bottom third of the pots, where most of the root growth occurred. However, even in these treatments the EC in the bottom layer was only 2.6 dS·m-1 (saturated medium extraction method), which is well within the recommended range. The 0.75- and 1.5-L treatments also reduced the respiration rate of the plants by 20%, but none of the treatments had a significant effect on the photosynthesis of the plants. Regression analysis indicated a negative correlation between the EC of the bottom layer of the growing medium and dark respiration, while the EC of the top and middle layer had no significant effect on respiration. Although top watering can increase the EC in the bottom layer of the growing medium, this effect is unlikely to be large enough to cause significant plant stress and damage.
Salvia splendens `Top burgundy' was grown in pots of different sizes (5, 50, 150, and 450 mL) to assess the effect of rooting volume on the growth and development of salvia. Seeds were planted in a peat-lite growing medium and plants grown in a greenhouse during the winter and spring of 1996. Plants were spaced far enough apart to minimize mutual shading and interplant light competition. Plants were harvested at weekly intervals and shoot and root dry mass and leaf area were measured. Relative growth rate (RGR) and net assimilation rate were calculated from these data. Differences in plant size became evident at 25 days after seeding. A small pot size (5 mL) decreased root and shoot dry mass, RGR, and NAR, while increasing the root:shoot ratio. Differences between the pot sizes became more apparent during the course of the experiment. The observation that root: shoot ratio decreased with increasing pot volume suggests that the decreased plant size in smaller pots was not the direct effect of reduced root size. Growth most likely was limited by the ability of the roots to supply the shoots with sufficient water and/or nutrients. Pot volume did not only affect the growth, but also the development of the plants. Salvia flowered faster in bigger pots (about 50 days after seeding in 450-mL pots), while the plants in 5-mL cells did not flower during the 9-week period of the experiment.
Mechanical conditioning can be used to control the height of vegetable and ornamental transplants. Previous research indicated that brushing plants increases cuticular water loss from detached leaves, which may be an indication of decreased drought resistance. This might decrease post-transplant survival of the plants. The objectives of this study were to determine the effect of brushing on growth and gas exchange by tomato (Lycopersicon esculentum Mill.) and quantify whole-plant water use during a slow dry-down period. Tomato plants were grown from seed in a greenhouse during Fall 1995. The brushing treatment started 11 days after seeding and consisted of 40 strokes, twice each day. After 39 days of treatment, brushing reduced height 32%, leaf area 34%, and shoot dry mass 29% compared to control plants. Brushing did not affect leaf gas exchange. Brushed plants had a higher stem water flux than control plants during the first 3 days of a 6-day dry-down period. Stem water flux was lower than that of control plants later in the cycle, presumably because brushed plants used more of the available water during the first 3 days. On the third day of the dry-down period, leaf conductance of brushed plants was 35% higher than that of control plants, resulting in a 10% higher transpiration rate per unit leaf area. Because brushed plants had less leaf area than controls, differences in whole-plant water use were small. Time to wilting was similar for the brushed and unbrushed plants (6 days after withholding water). It seems unlikely that brushing would have a major effect on drought tolerance of plants.
Uprooting and transplanting seedlings can cause root damage, which may reduce water and nutrient uptake. Initiation of new roots and rapid elongation of existing roots may help minimize the negative effects of transplant shock. In this study, seedlings with four true leaves were transplanted into diatomaceous earth and the plants were transferred to a growth chamber, where they were treated with NAA (0, 0.025, 0.25, and 2.5 mg·L-1; 36 mL/plant). The effects of drenches with various amounts of 1-naphthaleneacetic acid (NAA) on the posttransplant CO2 exchange rate of vinca [Catharanthus roseus (L.) G. Don] were quantified. Whole-plant CO2 exchange rate of the plants was measured once every 20 minutes for a 28 day period. Seedlings treated with 0.025 or 0.25 mg·L-1 recovered from transplant shock more quickly than plants in the 0 and 2.5 mg·L-1 treatments. Naphthaleneacetic acid drenches containing 0.025 or 0.25 mg·L-1 increased whole-plant net photosynthesis (Pnet) from 10 days, dark respiration (Rdark) from 12 days, and carbon use efficiency (CUE) from 11 days after transplanting until the end of the experiment. The increase in CUE seems to have been the result of the larger size of the plants in these two treatments, and thus an indirect effect of the NAA applications. These differences in CO2 metabolism among the treatments resulted in a 46% dry mass increase in the 0.025 mg·L-1 treatment compared to the control, but shoot-root ratio was not affected. The highest rate of NAA (2.5 mg·L-1) was slightly phytotoxic and reduced the growth rate of the plants.
Various growth stimulators have been reported to improve plant growth. Some of these are formulated to improve root growth, which would be particularly beneficial for reestablishing transplants. Three commercially available plant growth stimulators—PGR IV (MicroFlo, Lakeland, Fla.), Roots2 (Lisa Products Corp., Independence, Mo.), and Up-Start (The Solaris Group, San Ramon, Calif.)—were tested to quantify their effect on post-transplant growth of petunia (Petunia × hybrida Hort. Vilm.-Andr.) and impatiens (Impatiens wallerana Hook.f.) seedlings and to assess their value for the greenhouse industry. Seedlings were transplanted from plug flats into larger 5.6-fl oz (166-cm3) containers and treated with 1.1 fl oz (31 mL) of growth stimulator per plant (22 fl oz/ft2). Applications were made immediately after transplant. None of the treatments affected root mass at any time. Up-Start (2 fl oz/gal) increased final shoot dry mass by ≈20% compared to the control plants. The increase in shoot growth by Up-Start most likely is caused by the fertilizer it contains. Up-Start also increased flowering of petunia from 34 to 40 days after transplant. PGR IV (0.5 fl oz/gal) and Roots2 (1.28 fl oz/gal) did not affect dry mass of the plants. PGR IV increased the number of flowers of petunia and impatiens, but this effect occurred well after the plants were marketable. Roots2 caused a small delay in early flowering and an increase in late flowering of petunia but had no effect on flowering of impatiens. Since the effects of the growth stimulators was either due their fertilizer content (Up-Start) or occurred after the plants would have been sold (PGR IV, Roots2), none of the growth stimulators appears to be beneficial for bedding plant producers.
Transplanting can result in root damage, thereby limiting the uptake of water and nutrients by plants. This can slow growth and sometimes cause plant death. Antitranspirants have been used to minimize transplant shock of vegetables. The objective of this research was to determine if antitranspirants are useful to reduce transplant shock of impatiens (Impatiens wallerana Hook.f.) seedlings in the greenhouse. Seedling foliage was dipped in or sprayed with antitranspirant (Vapor Gard or WiltPruf) and shoot dry mass was determined at weekly intervals. Antitranspirants reduced posttransplant growth of impatiens as compared to untreated plants, possibly because of a decrease in stomatal conductance, leading to a decrease in photosynthesis. The two dip treatments also caused phytotoxic effects (necrotic spots) on the leaves. In a second study, leaf water, osmotic and pressure potential were determined at 2, 9, and 16 days after transplant. Application of antitranspirants (as a dip or spray) decreased water and osmotic potential compared to control plants. The results of this study indicate that antitranspirants are not useful for minimizing transplant shock of impatiens under greenhouse conditions.
Auxins are commonly used to induce root formation during in-vitro culture of higher plants. Because transplanting is often accompanied by root damage and loss of small roots, auxins also could be beneficial in minimizing transplant shock. Vinca (Cataranthus rosea) seeds were germinated in a peat-lite growing mix and transplanted into pots (55 mL) filled with a diatomaceous earth (Isolite) 10 days after planting. Pots were then placed in a tray containing 62.5 mL of auxin solution per pot. Two different auxins [indole-acetic acid (IAA) and naphtylacetic acid (NAA)] were applied at rates ranging from 0.01 to 100 mg/L. Post-transplant growth was slow, possibly because of Fe+2-deficiencies. Both IAA (1–10 mg/L) and NAA (0.01–10 mg/L) significantly increased post-transplant root and shoot growth. As expected, NAA was effective at much lower concentrations than IAA. At 63 days after transplant, shoot dry mass of plants treated with 0.1 mg NAA/L was four times that of control plants, while 10 mg IAA/L increased shoot dry mass three-fold. High rates of both IAA (100 mg/L) and NAA (10–100 mg/L) were less effective. The highest NAA rate (100 mg/L) was phytotoxic, resulting in very poor growth and death of many plants. These results suggest that auxins may be a valuable tool in reducing transplant shock and improving plant establishment.
Container size can affect the growth and development of bedding plants. The effects of widely differing container sizes on growth and development of salvia (Salvia splendens F. Sellow ex Roem. & Schult.) were quantified. Plants were grown in a greenhouse in 7.3-, 55-, 166-, and 510-mL containers. Container volume affected plant growth as early as 18 days after planting. Growth was positively correlated with pot size and differences increased throughout most of the growing period. Growth of the plants in the 7.3-mL cells was reduced because of a low net assimilation rate (4.34 g·m-2·d-1), compared to the plants in the 55-, 166-, and 510-mL pots (≈5.44 g·m-2·d-1). Plants in 510-mL containers grew faster than those in 55- and 166-mL containers because of a higher leaf area ratio. Both lateral branching and leaf expansion were suppressed by root restriction and flowering was delayed. The growth rate of plants in 166-mL pots declined after the onset of flowering, and final plant size was comparable for plants in 55- and 166-mL pots. Although water deficit stress or nutrient deficiencies cannot be excluded as contributing factors, these were probably not the main reason for observed differences.