Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: María Jesús Sánchez-Blanco x
Clear All Modify Search

Potted gerberas were grown in a greenhouse with one, two, or four emitters (1.2 L·h−1) per pot and irrigated with water of two levels of salinity (1.5 dS·m−1 and 3 dS·m−1). All pots received the same volume of water. The aim was to determine whether the number of emitters per pot affects the distribution of roots and salts in the substrate (100% coconut fiber). We determined the electrical conductivity (EC) distribution at three different heights (upper, middle, and lower). We also studied the roots and EC horizontal distribution in four quadrants (southeast, southwest, northwest, and northeast). Shoot growth, leaf damage, plant water status, and photochemical capacity of photosystem II were also studied. Two or four emitters per pot reduced the leaching fraction compared with that observed with one emitter, improving both the amount and homogeneity of substrate moisture. In the two saline conditions used, the salt concentration in the substrate was irregular both vertically and horizontally, and the presence of roots in the horizontal quadrant sides was heterogeneous. Both of these behaviors decreased as the number of emitters per pot increased. Root growth was weakly related with the soluble salt content in the root zone. When saline water is used, two emitters per pot are to be recommended because the difference between using two and four emitters was very slight. The use of only one emitter reduced shoot and root growth and encouraged salt damage to leaves.

Free access

Euonymus japonica Thunb. (euonymus) plants were submitted for 9 months to two irrigation treatments using water from different sources: a control (C) water with electrical conductivity (EC) less than 1.2 dS·m−1 and reclaimed wastewater (RW) with EC ≈4 dS·m−1. At the end of the experiment, no differences in the total dry weight were observed between treatments, whereas the leaf dry mass increased (to the detriment of the root part in RW plants). Throughout the day, the stem water potential (Ψstem) of the RW plants was lower than in C, whereas stomatal conductance (g S) was slightly reduced in RW from 0800 hr to 1200 hr, but no significant variation in photosynthesis (Pn) or energy conversion efficiency (F′v/F′m) in photosystem II was detected through the effect of salinity. Gas exchange and fluorescence showed a tendency to increase after midday in plants treated with RW. The photosynthetic behavior and fluorescence of RW plants may have been related to the nitrogen and chlorophyll content of the leaves, confirming the resistance of the photosynthetic mechanism to salinity in this species in these conditions. The toxic effects produced by high concentrations of boron (B), sodium (Na+) and chloride (Cl) were offset by the effect of other ions like magnesium (Mg2+), potassium (K+), and phosphorus (P) in plants irrigated with RW, thus improving their physiological status without decreasing their ornamental value.

Free access