Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Manuel C. Palada x
  • All content x
Clear All Modify Search
Free access

Toni A. Thomas and Manuel C. Palada

In the U.S. Virgin Islands (USVI) more than 400 plants are recorded as having been used for medicinal purposes. Traditional use of medicinal plants (locally known as “bush”) is based on Amerindian, African and European influences. Despite the predominance of “western medicine”, many Virgin Islanders still use medicinal plants for self-treatments, beverages and culinary purposes. Traditionally, medicinal plants were either collected growing wild or cultivated and often sold in marketplaces for local consumption. This method of marketing still exists, but new marketing outlets are developing. Selections of popular medicinal plants (imported and local) appear both fresh and packaged dry in supermarkets and specialty shops. Blended brews (i.e. “bush teas”) are available in restaurants, bakeries and delicatessens. Creatively packaged products are featured in stores and hotels catering to the tourist trade. Current expanding marketing trends target the great number of tourists visiting the USVI. Future plans with significant impact on marketing include the use of solar driers and establishment of a Fanners' Cooperative.

Free access

Manuel C. Palada and Stafford M.A. Crossm

The Caribbean region is one major source of most herbs and spices consumed in the U.S. Although the U.S. Virgin Islands (USVI) is part of the Caribbean, local production of herbs and spices does not contribute significantly to exports into the U.S. market. Nevertheless, culinary herbs area” important horticultural crop in the USVI and their sale provides income for many small-scale growers. Little research has been done to improve field production in the USVI. Inefficient cultural practices used by growers result in low yields. Lack of information on fertilizer rates, irrigation and pest control methods is a major constraint to high yields. In 1988, the Agricultural Experiment Station initiated a project to improve field production of herbs and spices in the USVI. Use of drip irrigation, mulching and fertilizers has improved yields of basil (Ocimum basilicum) and thyme (Thymus vulgaris). This paper will discuss crop management studies to improve culinary herb production in the USVI. Increasing production may help reduce U.S. imports of these specialty crops from other Caribbean island nations.

Free access

Chin H. Ma and Manuel C. Palada

High levels of N fertilizers are generally applied in intensive leafy vegetable production in the peri-urban agriculture of Southeast Asia. This study was conducted to develop a simple and rapid method of determining nitrate-N accumulation in selected leafy vegetables. Five leafy vegetables, including amaranth (Amaranthus tricolor), kangkong (Ipomoea aquatica), Ethiopian kale (Brassica carinata), choysum (Brassica campestris sp. parachinensis), and leafy lettuce (Lactuca sativa) were grown on raised beds in 32-mesh nethouse in randomized complete-block design with four replications. The crops were fertilized with eight N levels: 0, 50, 100, 150, 200, 250, 300, and 350 kg·ha-1 in three splits. At harvest, nitrate contents were determined in tissue sap of fully expanded leaf blades, petioles and whole plant using a Cardy nitrate meter. Chlorophyll content readings were also measured on the same leaf using a chlorophyll meter. Nitrate accumulations varied with vegetable species. Significant correlations (P< 0.001) existed between N fertilizer rate and nitrate content as well as leaf chlorophyll and yield. Using N application rate of 200 kg·ha-1, nitrate accumulation in Ethiopian kale was highest (7000 ppm), followed by kangkong (4000 ppm), amaranth (3500 ppm), and leafy lettuce (1200 ppm). The correlation between leaf chlorophyll meter reading (LCMR) and nitrate content was also significant (P< 0.001), suggesting the feasibility of using Cardy nitrate meter test and LCMR for monitoring production of low-nitrate and safe vegetables. The Cardy meter was also sensitive in detecting soil nitrate-N below 20 ppm and is a rapid and reliable alternative to conventional distillation method.

Free access

Manuel C. Palada, Thomas J. Kalb, and Thomas A. Lumpkin

AVRDC–The World Vegetable Center was established in 1971 as a not-for-profit international agricultural research institute whose mission is to reduce malnutrition and poverty among the poor through vegetable research and development. Over the past 30 years, AVRDC has developed a vast array of international public goods. The Center plays an essential role in bringing international and interdisciplinary teams together to develop technologies, empower farmers, and address major vegetable-related issues in the developing world. In its unique role, AVRDC functions as a catalyst to 1) build international and interdisciplinary coalitions that engage in vegetable and nutrition issues; 2) generate and disseminate improved germplasm and technologies that address economic and nutritional needs of the poor; 3) collect, characterize, and conserve vegetable germplasm resources for worldwide use; and 4) provide globally accessible, user-friendly, science-based, appropriate technology. In enhancing and promoting vegetable production and consumption in developing world, AVRDC's research programs contribute to increased productivity of the vegetable sector, equity in economic development in favor of rural and urban poor, healthy and more diversified diets for low-income families, environmentally friendly and safe production of vegetables, and improved sustainability of cropping systems. Recent achievements at AVRDC that greatly impact tropical horticulture in the developing world include virus-resistant tomatoes raising farmers income, hybrid sweet pepper breaking the yield barrier in the tropics, flood-resistant chili peppers opening new market opportunities, broccoli varieties for monsoon season, pesticide-free eggplant and leafy vegetable production systems and fertilizer systems that protect the environment. Beyond vegetable crops, AVRDC is playing an important role in expanding and promoting research and development efforts for high value horticultural crops, including fruit, ornamentals, and medicinal plants through its new Global Horticulture Initiative. AVRDC believes that horticulture crop production provides jobs and is an engine for economic growth. The important role AVRDC–The World Vegetable Center plays in developing and promoting tropical horticultural crops is discussed in this paper.

Free access

Manuel C. Palada, Stafford M.A. Crossman, and Allison M. Davis

Chive (Allium schoenoprasum) is one of the most popular culinary herbs in the Virgin Islands, and local demand is always high throughout the year. However, local production is not sufficient to meet increasing demands. Chive production is constrained by insect pests, weeds, and high cost of irrigation water. A study was conducted to compare the influence of organic and synthetic mulches on yield and economic returns from chive production. The study also evaluated the effect of mulch on weeds and water use. Chives were planted in plots consisting of three rows 3.6 m long. Plants were spaced 20 cm within rows 41 cm apart. The plots were mulched with grass straw, wood chips, shredded paper, and white plastic. A control plot (no mulch) was also planted for comparison. Plots were arranged in randomized complete-block design with four replications. All plots were drip-irrigated and soil moisture tension maintaned at 30 kPa. Chives grown with grass straw mulch produced taller plants and higher number of tillers (slips) than all other mulch treatments. Total fresh yield of plots with grass straw mulch was superior to all other mulch treatments including the control. On the average, plots with grass straw mulch produced 1203 g/m2 of fresh chives. All mulches resulted in reduced weed population compared to the control (no mulch). Due to high rainfall during the growing season, differences in irrigation water use were not significant. Economic comparison indicated that the net return above mulch costs was 50% higher with grass straw than with other mulch treatments. To improve production and income, herb growers should consider using grass straw and realize other benefits, including weed control and improved soil fertility.