Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Madeline W. Olberg x
Clear All Modify Search

Heating accounts for up to 30% of total operating costs for greenhouse operations in northern latitudes. Growers often lower air temperatures for production to reduce energy costs; however, this causes delays in development even in cold-tolerant crops, such as petunia (Petunia ×hybrida). This delay increases production time and can reduce profitability. Recent studies on low air temperature bedding plant production indicate petunia as a strong potential candidate for using lower air temperatures in combination with bench-top root-zone heating (RZH) to avoid or reduce delays in development. The objectives of this study were to 1) quantify time to flower (TTF) of seven petunia cultivars and two recombinant inbred lines (RILs) when the mean daily air temperature (MDT) was lowered by 5 °C and bench-top RZH was used and 2) determine if a high-quality petunia crop can be produced on RZH. Petunia ‘Sun Spun Burgundy’, ‘Sun Spun Lavender Star’, ‘Sanguna Patio Red’, ‘Potunia Plus Red’, ‘Potunia Plus Purple’, ‘Supertunia Red’, ‘Supertunia Bordeaux’, and two RILs, IA160 and IA349, were grown in a greenhouse with an MDT of 15 °C without RZH or with a RZH set point of 21, 24, or 27 °C. Additionally, a commercial control (CC) was established by growing plants without RZH at an MDT of 20 °C. All plants were grown under a 16-hour photoperiod to provide a daily light integral (DLI) of ≈12 mol·m−2·d−1. Time to flower was shorter at higher RZH set points. For example, TTF of ‘Potunia Plus Red’ was 56, 52, 49, or 47 days for plants grown at an MDT of 15 °C without RZH, or with RZH set points of 21, 24, or 27 °C, respectively. When a RZH set point of 27 °C was employed, TTF of all cultivars and inbred lines, except ‘Potunia Plus Red’ and ‘Sanguna Patio Red’, was similar to plants grown in the CC. Shorter stem length, lower growth index, and smaller shoot dry mass (SDM) at flowering were observed for plants grown under lower air temperatures with RZH, resulting in a more compact and high-quality plant. Producing a compact plant in a shorter time period is beneficial for growers; thus, results suggest that MDT can be lowered to 15 °C for petunia production when a RZH set point of 27 °C is employed.

Free access

Due to the high cost associated with constructing and operating a greenhouse, many growers have begun using alternative, low-input methods for bedding plant production, such as unheated high tunnel and outdoor production. Previous research indicates that bedding plant production in unheated high tunnels may be suitable for cold-tolerant species, but flowering is delayed compared with greenhouse production. To our knowledge, there has been no published research on the effects of outdoor production on bedding plant species. The objectives of this study were therefore to 1) compare the growth and development of 10 cold-tolerant and intermediate annual bedding plant species grown in an unheated high tunnel or in an unprotected outdoor growing area, 2) evaluate the effect of a 1-week acclimation period in the high tunnel before outdoor production, and 3) quantify the effectiveness of these production methods for producing high-quality bedding crops. Seedlings of ‘Antigua Orange’ african marigold (Tagetes erecta), ‘Hot Cakes White’ stock (Matthiola incana), and ‘Lilac Flame’ primula (Primula acaulis), and rooted cuttings of ‘Aloha Kona Hot Pink’ calibrachoa (Calibrachoa ×hybrida), ‘Royal Lavender’ regal geranium (Pelargonium ×domesticum), ‘Bella Oceano’ lobelia (Lobelia erinus), ‘Potunia Plus Red’ petunia (Petunia ×hybrida), ‘Phloxy Lady Purple’ phlox (Phlox maculata), ‘Summertime Pink Charme’ osteospermum (Osteospermum ecklonis), and ‘Empress Purple’ verbena (Verbena ×hybrida) were transplanted on 13 Apr. 2015 (week 16) into an unheated high tunnel or an outdoor growing area, or into an unheated high tunnel for a 1-week acclimation period before being moved outdoors. Average mean daily air temperature was 2.3 °C lower outdoors compared with inside the high tunnel, whereas average daily light integral (DLI) increased by 11.7 mol·m−2·d−1. All plants were delayed when grown outdoors compared with in the high tunnel, and all marigolds grown outdoors died in April when outdoor air temperatures dropped below −4 °C. When plants were acclimated for a 1-week period before outdoor production, all species, with the exception of regal geranium, were delayed by less than 1 week compared with those grown in the high tunnel. Stem length of all species grown outdoors was reduced or similar to those in the high tunnel, whereas biomass accumulation and branch number was unaffected or increased for most species. Overall, high-quality bedding plants could be grown outdoors, although development may be delayed compared with high tunnel production. Growers must be aware of the risk of crop loss due to extreme temperatures and plan for delays when growing annual bedding plant crops outdoors.

Full access

Ethephon [(2-chloroethyl) phosphonic acid] is a plant growth regulator (PGR) that releases ethylene following application. Although ethephon is commonly used as a foliar spray during the commercial production of ornamental crops, including spring bulb crops such as daffodil (Narcissus pseudonarcissus L.), there has been increased interest in using ethephon as a root-zone-applied PGR. In this work, we evaluated a number of factors important for the development of ethephon as a soil drench for daffodil. Results indicate that a given dose (milligrams ethephon per pot) could be applied in volumes ranging from 15 to 120 mL (per 15-cm pot) with equal efficacy. Similarly, the same dose of ethephon could be applied as a foliar/substrate surface spray with volume of 105 to 525 mL·m−2 with equal efficacy. Although the efficacy of ethephon drenches interacted with forcing temperature, drenches were nonetheless effective across the range of temperatures commonly used for daffodil production. Plant size at the time of ethephon application had no effect on final plant size (at flower senescence). The rate of ethylene release from a peat-based substrate was highly temperature dependent, and ethephon was readily leached from this same substrate.

Free access

In our study, we investigated whether root hydraulic conductance is related to post-transplant recovery. We used two Quercus species that differ in their transplant ability, Q. bicolor and Q. macrocarpa. Q. bicolor easily survives transplanting, whereas Q. macrocarpa often does not. We compared root hydraulic conductance after transplanting between control (without root pruning) and root-pruned, 1-year-old, small-caliper trees. We also examined the effects of transplant timing on post-transplant recovery of large-caliper trees. Hydraulic conductance in fine roots was correlated with recovery of the two Quercus species after transplanting. Six months after transplanting, small-caliper Q. bicolor trees had similar specific hydraulic conductance (K S) in fine roots compared with the K S before root-pruning, whereas fine root K S in small-caliper Q. macrocarpa trees decreased. Lower pre-dawn and midday xylem water potential in root-pruned Q. macrocarpa 6 weeks after transplanting indicates that root-pruned Q. macrocarpa experienced transplanting-induced water stress. For large-caliper trees, all Q. macrocarpa trees exhibited typical symptoms of transplant shock regardless of transplant timing, which was the result of higher vulnerability to mild water stress compared with Q. bicolor, resulting in a large reduction in fine root K S. Fine root K S in spring-transplanted Q. bicolor trees was much higher than that in fall-transplanted trees, implying spring transplanting is optimal for Q. bicolor. Other intrinsic characteristics of the species should be considered in the future when making better decisions on transplant timing such as xylem anatomy, carbon storage, rhizosphere conditions, and plant growth.

Free access