Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mackenzie G. Dey x
Clear All Modify Search

Silicon (Si) is a beneficial element that is usually ample in mineral soil solution, but it is minimally bioavailable from soilless substrates. Several Si additives are commercially available, but the rate of dissolution of Si is not well-characterized. The ideal additive would steadily release bioavailable Si over the crop lifecycle. We report the long-term (120 days) dissolution of Si from soilless substrates and substrate additives. Studies involving gently agitated containers with deionized water indicated that perlite, sphagnum peat, vermiculite, and coconut coir released less than 0.03 mmol Si per liter of substrate per day. Rice hulls and wollastonite (CaSiO3) had 7- to 130-times faster rates of dissolution in this system; therefore, they were further studied in peat-based media. Dissolution of Si from the addition of 1 g wollastonite per liter of peat peaked at day 10 at 2.1 mmol Si per liter of media per leaching event (15% by volume); then, it gradually decreased over 120 days. The peak dissolution of Si amended with 12% rice hulls was similar, but it gradually increased over time. The concentrations of nine heavy metals in plant tissue were compared with untreated control plants to determine wollastonite and steel slag. The concentration of some elements statistically increased, but all concentrations were well below the legal concentration limits of these elements for human consumption in the United States. These results indicate that both wollastonite and rice hulls steadily release Si for up to 4 months; therefore, they are good sources of Si for container-grown crops in soilless media.

Open Access

Copper (Cu) is typically adequate at 0.5 μM (0.03 ppm) in hydroponics and at 2 μM (0.125 ppm) in soilless media, but elevated levels can be used to inhibit pathogenic fungal growth. We studied the effect of elevated Cu on the growth of lettuce and tomato in peat-based media and deep-flow hydroponics. Lettuce growth in hydroponics was not hindered until a concentration greater than 4 μM (0.25 ppm) Cu was used, which is eight times greater than the adequate level. Tomato was more tolerant of elevated Cu, with no growth suppression up to 8 μM (0.5 ppm) in hydroponics. Organic matter tightly binds Cu, and bioavailability is thus determined by organic components in soilless media. We confirmed an adsorption capacity of 19 mg Cu per g of peat, which explains why there was no inhibition of lettuce or tomato growth up to 1000 μM (64 ppm) Cu in peat-based media. When chelated with ethylenediaminetetraacetic acid, Cu binding to organic matter was reduced and growth was decreased in lettuce but not tomato. Both species tolerated a 100-fold greater concentration of Cu in peat-based media than in deep-flow hydroponics. Elevated Cu in solution increased concentrations 20 times greater in root tissue than in leaves. These solution and tissue concentrations are greater than identified toxicity thresholds of pathogenic fungal and fungal-like organisms, and could thus be used to suppress root-borne fungal and fungal-like diseases.

Open Access