Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Maciej A. Zwieniecki x
  • All content x
Clear All Modify Search
Open access

Jessie M. Godfrey, Louise Ferguson, and Maciej A. Zwieniecki

Salinity’s many stresses may not kill a relatively salt-tolerant perennial in one season, but they can still deplete or modify nonstructural carbohydrate (NSC) pools. Any change to the quantity or quality of NSC reserves may have detrimental effects on phenology and reproduction, as well as yield, in tree crops. This study integrates salinity’s infringement on the energy margins of pistachio rootstock ‘UCB-1’ (an interspecific hybrid of Pistacia atlantica and P. integerrima) at senescence by measuring sugar and starch pools in wood, bark, and roots after treatment with ≈100 days of moderate to high salinity (50–100 mm NaCl and 10–20 mm CaCl2). Supported by a second experiment using sodium orthovanadate (NaOV) to block active xylem retrieval in the same hybrid pistachio rootstock, we conclude that retrieval of Na+ from xylem sap may allow for the preservation of NSC pools (particularly, starch) in mature xylem tissues by limiting the demand for carbon-based osmoticum (sugars). In contrast, younger growing tissues (bark and fine roots) were found to counteract salinity by degrading carbon-dense starch into osmotically active sugars at the expense of total NSC reserves, suggesting a physiological shift toward protection/isolation from environmentally pervasive but potentially toxic salts in these tissues.

Free access

Aude Tixier, Adele Amico Roxas, Jessie Godfrey, Sebastian Saa, Dani Lightle, Pauline Maillard, Bruce Lampinen, and Maciej A. Zwieniecki

Temperature is assumed to be the principal regulatory signal that determines the end of dormancy and resumption of growth. Indirect evidence that stem temperature interferes with phenology comes from the common orchard practice of painting stems to protect them from disease. This work studies the effects of application of white paint to the stems of persian walnut (Juglans regia) trees on winter stem temperature, carbohydrate content, and spring phenology. Painting bark resulted in the delay of budbreak by several days, higher nonstructural carbohydrate (NSC) concentrations in the bark and wood of painted extension shoots and changes in the spatial gradients of NSC during budbreak. The demands of maintenance respiration exceeded mobilization from local carbon pools during bud development suggesting a potential role of carbohydrate transport during spring budbreak in persian walnut. Painting provides an exciting perspective for mitigating effects of milder winter in orchards. The effect of reducing diurnal and spatial temperature variability limits early budbreak, NSC depletion associated with intense maintenance respiration, freeze–thaw cycles and frost dehardening.