Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: M.R. Evans x
Clear All Modify Search

Ten substrates were formulated by blending perlite or parboiled fresh rice hulls (PBH) to produce root substrates (substrates) that contained either 20%, 30%, 40%, 50%, or 60% (by volume) perlite or PBH, with the remainder being sphagnum peatmoss. All substrates containing PBH had higher total pore space than substrates containing an equivalent amount of perlite. As the percentage perlite increased from 20% to 60%, the total pore space decreased. The total pore space increased as the amount of PBH increased to 50% and then decreased as the amount of PBH increased from 50% to 60%. The air-filled pore space was not different between substrates containing 20% perlite or PBH. However, the air-filled pore space was higher in PBH-containing substrates than in equivalent perlite-containing substrates when the amount of PBH or perlite was at least 40%. As the amount of perlite or PBH was increased, the air-filled pore space increased, but the rate of increase was higher for PBH-containing substrates. The 20% PBH-containing substrate had a higher water-holding capacity than the 20% perlite-containing substrate. However, at 30% or higher PBH, the PBH-containing root substrates had a lower water-holding capacity than equivalent perlite-containing substrates. As the percentage perlite or PBH was increased, the water-holding capacity decreased, but at a higher rate in PBH-containing substrates than in perlite-containing substrates. For all substrates except those containing 40% PBH or perlite, substrates containing PBH had lower bulk densities than equivalent perlite-containing substrates. The differences in bulk densities were not great enough to be of practical significance. Inclusion of PBH in the substrate provided for drainage and air-filled pore space as did perlite. However, less PBH would be required in a substrate to provide the same air-filled pore space as perlite when more than 20% perlite or PBH is used.

Full access

Substrates were formulated by blending parboiled fresh rice (Oryza sativa) hulls (PBH) or perlite with sphagnum peat (peat) to produce root substrates (substrates) that contained 20%, 30%, 40%, 50%, or 60% (by volume) PBH or perlite with the remainder being peat. After 0 (initial mixing), 4, or 8 weeks in a greenhouse environment, samples were taken and pH, electrical conductivity (EC), nitrate (NO3 −), ammonium (NH4 +), phosphorus (P), and potassium (K) were determined. As the amount of PBH or perlite in the substrate was increased, the pH increased. After 0 and 8 weeks, the pH of substrates containing up to 30% PBH or perlite had a similar pH. However, the rate of pH increase at these sampling times was higher than that of perlite so that substrates containing 40% or more PBH had a higher pH than equivalent perlite-containing substrates. At the week 4 sampling period, all substrates containing PBH had a higher pH than equivalent perlite-containing substrates. For all sampling times, the difference in pH between equivalent PBH and perlite-containing substrates was not high enough to be of practical significance. For all sampling times, EC increased as the amount of perlite was increased. Depending upon sampling time, the EC decreased or remained unchanged as the amount of PBH was increased. For all sampling times and substrates, EC was within acceptable ranges for unused substrates. Substrates containing PBH had higher NO3 − levels than equivalent perlite-containing substrates. The NH4 + level of the substrates decreased as the amount of PBH or perlite was increased. The levels of NO3 − and NH4 + were within acceptable ranges for unused substrates. Substrate P and K increased as the amount of PBH in the substrate was increased, but the concentration of P and K remained unchanged or decreased as the amount of perlite was increased. None of the differences between equivalent PBH and perlite-containing substrates was high enough to be problematic with respect to crop production and all of the chemical parameters were within acceptable ranges for unused root substrates.

Full access

Substrates were formulated by blending parboiled fresh rice (Oryza sativa) hulls (PBH) or perlite with sphagnum peat (peat) to produce root substrates (substrates) that contained 20%, 30%, 40%, 50%, or 60% (by volume) PBH or perlite with the remainder being peat. After 0, 4, or 8 weeks in a greenhouse environment, samples were taken and calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and boron (B) were determined. At all sampling times, substrates containing PBH had higher Ca concentrations than perlite-containing substrates. At all sampling times, Ca concentration decreased as the amount of perlite or PBH was increased, but the Ca concentration decreased at a higher rate in perlite-containing substrates than in PBH-containing substrates. After 0 weeks, perlite-containing substrates had higher Mg concentrations than equivalent PBH-containing substrates, but the opposite was true after 4 weeks. After 8 weeks, perlite- and PBH-containing substrates had similar concentrations of Mg. At all times, Mg concentration decreased as the amount of perlite or PBH was increased. Perlite substrates had higher concentrations of Fe than equivalent PBH substrates, and as the amount of perlite or PBH was increased, the amount of Fe decreased. PBH-containing substrates had higher concentrations of Mn than equivalent perlite-containing substrates, and as the amount of PBH was increased, the amount of Mn increased. Cu concentrations were significantly affected by sampling time, but at all sampling times, PBH-containing substrates had similar or higher Cu concentrations than equivalent perlite-containing substrates. Perlite substrates had higher concentrations of Zn than equivalent PBH substrates, and as the amount of perlite was increased, the amount of Zn increased. S and B were not significantly affected by substrate component or time. Secondary macro- and microelement concentrations of all substrates were within recommended levels for greenhouse crops except for Mn. Mn concentrations were within recommended ranges at up to 50% PBH. In most cases, PBH would be used at levels lower than 50%, but in cases where more than 50% PBH were used in the substrate, proper pH management may be important to prevent excessive Mn availability.

Full access
Authors: and

The annual bedding plants `Dazzler Rose Star' impatiens (Impatiens wallerana), `Cooler Blush' vinca (Catharanthus roseus), `Orbit Cardinal' geranium (Pelargonium × hotorum), `Janie Bright Yellow' marigold (Tagetes patula) and `Bingo Azure' pansy (Viola tricolor) were grown on germination papers treated with deionized water (DI), 2500 or 5000 mg·L-1 (ppm) humic acid (HA) or nutrient control (NC) solutions. Seedlings grown on HA-treated germination papers had higher dry root weights than those grown on DI or NC-treated germination papers. Except for impatiens, seedlings germinated on HA-treated germination papers had higher lateral root numbers and higher total lateral root lengths than those grown on DI and NC-treated germination papers. Impatiens grown on NC-treated germination papers had higher lateral root numbers than those grown on DI or HA-treated germination papers. Overall, lateral root numbers for impatiens were higher for seedlings germinated on HA-treated papers than DI or NC-treated papers and highest lateral root numbers occurred on those impatiens germinated on papers treated with 5000 mg·L-1 HA. Except for geranium, seedlings grown in HA-amended sphagnum-peat-based substrates had similar dry root and dry shoot weights as those grown in unamended substrates. Geranium seedlings grown in HA-amended sphagnum peat-based substrates had significantly higher dry root weights than those grown in unamended substrates. However, dry shoot weights of geranium grown in HA-amended sphagnum peat-based substrates were similar to those grown in unamended substrates.

Full access

Various saponins have demonstrated allelochemical effects such as bactericidal impacts as well as antimycotic activity against some plant pathogenic fungi, thereby acting to benefit plant growth and development. A commercial saponin solution was evaluated for bactericidal effects against Escherichia coli and growth of lettuce (Lactuca sativa) in a hydroponic system. E. coli (P4, P13, and P68) inoculum at final concentration of 108 colony-forming units (cfu)/mL was added to 130 L of a fertilized solution recirculating in a nutrient film technique (NFT) system used to grow ‘Rex’ lettuce. After 5 weeks in the NFT system, E. coli populations were lowest in the inoculated treatment that did not contain any saponin addition (0.89 log cfu/mL) when compared with all other inoculated treatments (P < 0.001). The treatment containing 100 µg·mL−1 saponin extract had an E. coli population of 4.61 log cfu/mL after 5 weeks that was higher than treatments containing 25 µg·mL−1 or less (P < 0.0001). Thus, higher E. coli populations were observed at higher saponin concentrations. Plant growth was also inhibited by increasing saponin concentrations. Fresh and dry shoot weight were both higher in the inoculated and uninoculated treatments without the saponin addition after 5 weeks in the NFT system (P < 0.0001). Lettuce head diameter was smaller when exposed to saponin treatments with concentrations of 50 and 100 µg·mL−1 (P < 0.0001). Lettuce leaves were also tested for the potential of E. coli to travel systemically to the edible portions of the plant. No E. coli was found to travel in this manner. It was concluded that steroidal saponins extracted from mojave yucca (Yucca schidigera) are not an acceptable compound for use in mitigation of E. coli in hydroponic fertilizer solution due to its ineffectiveness as a bactericide and its negative impact on lettuce growth.

Open Access

An accurate yield map is imperative for successful precision farming. For 3 years (1998 to 2000) two to four potato (Solanum tuberosum) fields on a commercial farm in southeastern Washington were yield-monitored using commercial yield monitoring equipment without operator interaction. Multiple potato diggers were used to harvest the fields and diggers used were not necessarily the same at each harvest. In all years, yield monitoring data were missing due to equipment failure or lack of yield monitoring equipment on all diggers. Banding, due to dissimilar calibrations, different equipment used, or differential digger performance was observed in 1998 and 2000. Based on experience described here, some yield monitor data need minimal postprocessing or correction, other data need substantial postprocessing to make them usable, and other data may not be reliable due to equipment failure, improper calibration, or other causes. Even with preharvest calibration, it is still likely that the potato yield monitor data will need differential postprocessing, indicating that yield maps lack accuracy. In addition, comparison to yield data collected at multiple points within the field, this study found that the yield monitor over estimated potato yield. Thus, with some postprocessing, a useful yield map showing within field differences is possible. However, without significant postprocessing, the practice of using multiple diggers and yield monitors for potato harvest, both within and between fields, severely limits the ability to make consistent yield maps in commercial potato operations.

Full access

Prohexadione-Ca (BAS 125 W) is currently developed as an inhibitor of excessive vegetative growth in apple. In addition to the control of shoot growth, pronounced effects on the incidence of scab (Venturia inaequalis) and fire blight (Erwinia amylovora) are observed that are not due to any fungicidal or bactericidal effect of the compound. Prohexadione-Ca induces marked changes in the metabolism of phenylpropanoids most likely by inhibiting distinct dioxygenases, such as flavanone 3-hydroxylase, which require 2-oxoglutarate as a co-substrate. The content of flavonoids such as luteoliflavan (which does not normally occur in apple tissue) and eriodyctiol is drastically increased reaching levels in the range of 50 mg per gram of dried young shoot tissue. Simple phenols, the identity of which is still unknown, also undergo intense changes. Since phenylpropanoids have often been found to be involved in defense mechanisms of higher plants, further studies on their role in pathogen resistance in apple are justified from these results.

Free access

Small- and large-scale farmers must often decide when to begin application of fungicides, either before the onset of disease as a preventative treatment or after disease becomes evident in the field. Growers also must decide about products that claim to enhance fungicide efficacy when added to the spray mixture. A study was conducted during the summer of 2002 to investigate control of foliar diseases of vine crops (Cucurbita spp.) with low-input (LI) or high-input (HI) management approaches and six fungicide/spray combinations at four locations in southeastern United States. Fungicide applications began for LI when leaf disease first became evident and for HI about 20 days after seeding. Both approaches continued applications at 7- to 10-day intervals until harvest. Spray treatments consisted of a water-only control or one of six combinations of azoxystrobin/chlorothalonil alone or in combination with potassium bicarbonate, foliar phosphite (0N–12.2P–21.6K), or foliar nitrogen (25N–0P–0K). Azoxystrobin was applied in rotation with chlorothalonil for all treatments except the control. Seeds of ‘Lil’ Goblin’ pumpkin (Cucurbita pepo) were planted July to August and fruit harvested October to November, depending on location. Plants were rated twice for powdery mildew (Sphaerotheca fuliginea and Erysiphe cichoracearum) and downy mildew (Pseudoperonospora cubensis). HI did not significantly increase yield compared with LI. All fungicide treatments significantly increased yield and reduced foliar diseases compared with the water-only control. The simplest of treatments, the azoxystrobin/chlorothalonil rotation without any other chemicals, can be recommended for general use where strobilurin resistance has not been documented.

Full access

A mechanical planter was developed to sow seed of baby lima beans (Phaseolus lunatus) in small plots. The mechanical seeder allowed small plots to be quickly and consistently seeded at a fixed spacing. Seeds were manually spread along a 10-ft (3.0 m) base plate containing 50 holes of slightly larger diameter than the seed length and at the desired seed spacing [2.4 inches (6 cm)]. Once all the holes were filled, a slider plate below the base plate containing holes of the same diameter and spacing, but which were slightly offset, was slid horizontally so that the holes of the base and slider plates aligned and the seeds dropped to the bottom of the furrow. Compared to manual planting, the mechanical planter increased the precision of seed placement and reduced the time needed to plant 50 seeds. The planter was easy to use and transport, and was inexpensive.

Full access