Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: M.M. Peet x
Clear All Modify Search
Author:

The environmental and physiological causes of cracking or splitting of soft fruits and citrus as they ripen are not well understood. This paper explores factors contributing to radial cracking in tomatoes, gives suggestions for prevention of cracking, and suggests directions for future research. Fruit cracking occurs when there is a rapid net influx of water and solutes into the fruit at the same time that ripening or other factors reduce the strength and elasticity of the tomato skin. In the field, high soil moisture tensions suddenly lowered by irrigation or rains are the most frequent cause of fruit cracking. Low soil moisture tensions reduce the tensile strength of the skin and increase root pressure. In addition, during rain or overhead irrigation, water penetrates into the fruit through minute cracks or through the corky tissue around the stem scar. Increases in fruit temperature raise gas and hydrostatic pressures of the pulp on the skin, resulting in immediate cracking in ripe fruit or delayed cracking in green fruit. The delayed cracking occurs later in the ripening process when minute cracks expand to become visible. High light intensity may have a role in increasing cracking apart from its association with high temperatures. Under high light conditions, fruit soluble solids and fruit growth rates are higher. Both of these factors are sometimes associated with increased cracking. Anatomical characteristics of crack-susceptible cultivars are: 1) large fruit size, 2) low skin tensile strength and/or low skin extensibility at the turning to the pink stage of ripeness, 3) thin skin, 4) thin pericarp, 5) shallow cutin penetration, 6) few fruits per plant, and 7) fruit not shaded by foliage. Following cultural practices that result in uniform and relatively slow fruit growth offers some protection against fruit cracking. These practices include maintenance of constant soil moisture and good Ca nutrition, along with keeping irrigation on the low side. Cultural practices that reduce diurnal fruit temperature changes also may reduce cracking. In the field, these practices include maintaining vegetative cover. Greenhouse growers should maintain minimal day/night temperature differences and increase temperatures gradually from nighttime to daytime levels. For both field and greenhouse tomato growers, harvesting before the pink stage of ripeness and selection of crack-resistant cultivars probably offers the best protection against cracking. Areas for future research include developing environmental models to predict cracking and exploring the use of Ca and gibberellic acid (GA) sprays to prevent cracking.

Full access
Author:

“Sustainable Practices for Vegetable Production in the South,” 174 pages long, including 250 references, was written as a traditional college textbook. I will be discussing my experiences converting it to a web document and simultaneously releasing web and print versions. I will also discuss some of the issues we will confront if we depend on the web for delivering and receiving information. These issues are: 1)There are no conventions for websites comparable to those that have evolved for print documents. At the same time, users expect sites to function certain ways. 2) Consistency between parts of the website is more difficult to maintain than in a print document, but is critical in order to correctly orient the user. 3) The optimal size and structure of the information “chunk” or subdivision is unclear—Should it be a whole chapter or article, a single paragraph, or a functional unit of facts that does not have a name or correspond to anything in print media? 4) How do you let a person accessing any one part of your website know about all the other parts and how they fit together—You can flip through a book to view it, but a person following a link to a page on your site is like the blind person touching the elephant's trunk—they can not visualize the whole. 5) There is no one intuitively obvious or logical place to put references and footnotes because of the subdivision of information into “chunks” or functional facts. 7) There is no obvious starting or stopping point in making revisions. 8) People accessing the site will send messages and ask questions. 9) Meaningful evaluation of usage and usefulness is difficult.

Free access
Author:

It is often difficult to obtain information on producing vegetables using `sustainable' practices such as reduced inputs of pesticide and commercial fertilizers. Lack of such information is often cited by conventional farmers and extension agents as a reason for not adopting or assisting others in adopting sustainable techniques. As part of a Southern Region Low Input Sustainable Agricultural (LISA) Program, we are compiling a database which will include techniques for vegetable production acceptable to `organic' farmers as well as those acceptable to conventional farmers. This information source will include information on 17 specific vegetables and well as chapters on general topics such as cover crops and weed control. We hope to make this information available both as a production manual and by way of an electronic information retrieval system. Steps in the development of this project include initially soliciting input from farmers and extension workers on the preferred content and format and conducting an on-going evaluation by these groups as segments are developed. The database should be available within 2 years in both electronic and hardcopy versions.

Free access
Author:

Sustainable Practices for Vegetable Production in the South, 174 pages long and with 250 references, was written as a traditional college textbook, but is also available as a World Wide Web (Web) site (http://www2.ncsu.edu/sustainable/). This article chronicles the conversion of the entire text to a Web document and the simultaneous release of Web and print versions. I will also discuss some of the issues that we will confront if we depend on the Web for delivering and receiving content-rich information. These issues are as follows. 1) Although there are no standards for Web sites as there are for print documents, there are certain similarities in the way most Web sites function. Relative to our familiarity with book and journal conventions, those of us educated in the age of print are unaware of Web standards. 2) The optimal size and structure of the information chunk is unclear. Should it be a whole chapter or article, a single paragraph, or a functional unit of facts that doesn't have a name or correspond to anything in print media? 3) Organization and consistency are critical. Table and chapter numbers are meaningless. The most important question is “How does a person accessing part of your Web site know about all the other parts and how they fit together?” You can flip through a book to view it, but a person following a link to a particular page on your site is like the blind man touching the elephant's trunk—the whole is hard to visualize. 4) There is no good place to put references and footnotes because of the subdivision of information into chunks of functional facts. 5) There is no obvious starting or stopping point in making revisions. 6) People accessing the site will send messages and ask questions.

Full access
Authors: and

The effects of chronic, mild heat stress on fruit set, fruit production, release of pollen grains, photosynthesis, night respiration, and anther dehiscence were ex-amined in tomatoes (Lycopersicon esculentum Mill.) differing in high temperature sensitivity. Plants were grown under three temperature regimes: 1) 28/22 or 26/22 °C (optimal temperature) 2) 32/26 °C (high temperature), and 3) 32/26 °C day/night temperatures relieved at 28/22 °C for 10 days before anthesis, then returned to 32/26 °C (relieving treatment). `FLA 7156' was the only cultivar with fruit set at 32/26 °C. All five cultivars, however, had fruit set in the relieving treatment (RT). The longer the relief, the higher was the percentage of fruit set. Longer periods of relief also increased the number of pollen grains released and linear regression analysis showed a significant relationship between the number of pollen grains released and the percentage of fruit set. Germination of pollen grains was also lowered in high-temperature-grown plants. The number of pollen grains produced, photosynthesis, and night respiration did not limit fruit set under chronic, mild heat stress, however. This suggested that cultivar differences in ability to release pollen and to produce viable pollen under heat stress are the most important factors determining their ability to set fruit.

Free access
Authors: and

Excess irrigation water was provided to spring crops of bag-grown greenhouse tomatoes (Lycopersicon esculentum Mill.) to test the effect on radial fruit cracking. Varied numbers of emitters were placed in bags filled with soilless medium to provide different amounts of irrigation water. In 1990, all emitters provided water containing nutrient solution, but in 1992, the extra water added in one treatment did not contain nutrient solution. In both years, the percentage of cracked fruit was 20 percentage points higher in the treatments receiving more water. The increase in cracking was similar whether or not nutrient solution was added to the extra water. There also were some effects of the extra water on yield. Fruit count per plant was slightly higher (9.5%) when extra water was provided without nutrient solution, but was the same when nutrient solution was added to the extra water. Fruit weights per plant were 18.6% higher in 1990 when watering was increased. In 1992, fruit weights were similar, except for the treatment where the extra water provided did not contain nutrient solution. Fruit weight in this treatment was 19.7% higher than in the other treatments. In both crops, the percentage of cracking increased as linear and quadratic functions of cluster positions, i.e., there was more cracking in the upper clusters. In greenhouse situations, growers should consider water reduction when experiencing high levels of fruit cracking and as a precautionary measure when harvesting from the upper clusters. Providing excess water to greenhouse-grown tomatoes may be a viable technique for screening cultivars or for conducting research on practices to reduce cracking.

Free access
Authors: and

Chlorophyll fluorescence was measured under both laboratory and greenhouse conditions in an effort to develop a quick, reliable, and inexpensive laboratory procedure capable of predicting heat stress experienced by tomato (Lycopersicon esculentum Mill.) under greenhouse conditions. The laboratory tests consisted of measurements of the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) performed on leaf discs taken from whole tomato leaves and placed on a temperature controlled plate. Comparisons were made with greenhouse measurements of the same parameter conducted on intact leaves of whole plants exposed to different temperature treatments imposed by manipulation of the aerial environment of the greenhouse. Dark adaption periods ranging from 15 min to all day in the greenhouse and temperature exposure periods ranging from 5 min to 60 min in the laboratory were compared to find the best correlation between the two tests. Best agreement was obtained with 60 min treatment times in the laboratory and 60 min dark adaption periods in the greenhouse. Fv/Fm decreased quadratically with increasing leaf temperature in a similar fashion in both tests, suggesting that the laboratory approach can adequately predict plant response to greenhouse heat stress.

Free access
Authors: , , and

Starting 2 weeks before anthesis of the first flower, tomato cultivars (Lycopersicon esculentum Mill.) differing in heat tolerance were exposed to mild heat stress (31/24 vs. 28/22 °C) at three levels of relative humidity (30%, 60%, and 90%) in controlled environment chambers at the Duke Univ. Phytotron. Pollen development in the anthers was followed cytologically, pollen release was measured at anthesis, and seed production and fruit weight were measured as fruit matured. Fruit and seed development were best at 60%RH and 28/22 °C and worst at 90% RH and 31/24. Seed development was poor at 31/24 °C at all humidity levels. It was also poor at 28/22 in the 90% RH treatment. Low relative humidity had a greater negtive effect on fruit and seed production and on cytological development in plants grown at high temperature. Pollen release was also reduced at 90% RH, with virtually no pollen released at 31/24 °C. Cytological examinations revealed developmental anomolies in pollen in some, but not all cultivars at 90% and 30% RH. Plant height was also affected by the treatments, with much taller plants in the high-temperature, high-humidity treatments.

Free access