Search Results
In this field study, five preemergence and two postemergence herbicides were evaluated for their ability to hasten Meyer zoysiagrass (Zoysia japonica Steud.) sod development when sod was established from the regrowth of rhizomes, sod strips, and loosened plant debris. Herbicide influence on zoysiagrass re-establishment was examined using two postharvest field preparation procedures as follows: area I was raked to remove most above-ground sod debris, whereas in adjacent area II sod debris was allowed to remain in place. Herbicides that controlled smooth crabgrass [Digitaria ischaemum (Schreb.) Muhl.] generally enhanced zoysiagrass cover by reducing weed competition. Meyer established from rhizomes, sod strips, and loosened plant debris, and treated with herbicides, had a rate of sod formation equivalent to that expected in conventionally tilled, planted, and irrigated Meyer sod fields. Effective smooth crabgrass control was achieved when the rates of most preemergence herbicides were reduced in the 2nd year. Chemical names used: dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate (DCPA); 3,5,-pyridinedicarbothioic acid, 2-[difluromethyl]-4-[2-methyl-propyl]-6-(trifluoromethyl)∼S,S-dimethyl ester (dithiopyr); [±]-ethyl 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate (fenoxaprop); 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); N-[1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine(pendimethalin);N3,N3-di-n-propyl-2,4-dinitro-6-[trifluromethyl)-m-phenylenediamine (prodiamine); and 3,7-dichloro-8-quinolinecarboxylic acid (quinclorac).
Sprigs of `Meyer' zoysiagrass (Zoysia japonica Steud.) were treated with urea nitrogen, a biostimulator, and one of three preemergence herbicides or one of two postemergence herbicides to hasten establishment in two field studies. Monthly application of N at 48 kg·ha–1 during the growing season had no influence on sprig establishment the first year, but slightly increased (+5%) zoysiagrass cover the second year. Presoaking sprigs in a solution containing (mg·L–1) 173 auxin and 81 cytokinin, and iron at 1.25 g·L–1 before broadcasting of sprigs, and biweekly sprays (g·ha–1) of 53 auxin and 24 cytokinin, and iron at 0.2 g·L–1 or (g·ha–1) 68 auxin and 36 cytokinin, and iron at 1.45 g·L–1 after broadcasting sprigs had no effect on zoysiagrass cover or rooting. Preemergence and postemergence herbicide use generally enhanced zoysiagrass cover by reducing smooth crabgrass competition [Digitaria ischaemum (Schreb. ex Schweig) Schreb. ex Muhl]. Oxadiazon enhanced zoysiagrass coverage more than dithiopyr, pendimethalin, quinclorac, or fenoxaprop. Oxadiazon and dithiopyr provided similar levels of crabgrass control, but dithiopyr reduced `Meyer' zoysiagrass midsummer root growth. Chemical names used: 3,5,-pyridinedicarbothioic acid, 2-[difluromethyl]-4-[2-methyl-propyl]-6-(trifluoromethyl)-S,S-dimethyl ester (dithiopyr); [±]-ethyl 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate (fenoxaprop); 3-[2,4-dichloro-5-(1-methylethoxy)phenyl]-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one (oxadiazon); N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine (pendimethalin); 3,7-dichloro-8-quin-olinecarboxylic acid (quinclorac).
Fenoxaprop (0.027, 0.036, and 0.045 kg·ha-1) was field-applied at either of 2-, 3-, or 4-week intervals to perennial ryegrass (Lolium perenne L.) naturally infested with smooth crabgrass [Digitaria ischaemum (Schreb.) Muhl.] in Maryland (Easton and Silver Spring) during 1989 and 1990. In 1989, fenoxaprop applied at 2- or 3-week intervals at 0.027 kg·ha-1 provided fair (>74%) to good (>80%) smooth crabgrass control. Fenoxaprop applied at 0.036 or 0.045 kg·ha-1 at 2- or 3week intervals provided good to excellent (> 90%) smooth crabgrass control. Four-week intervals generally provided control that was inferior to the shorter application intervals at Silver Spring but not at Easton. In 1990, all rates provided good to excellent smooth crabgrass control when applied at 2- or 3-week intervals in Easton. At Silver Spring, where smooth crabgrass levels were very high, >88% control was provided by 0.036 kg·ha-1 applied at a 2-week interval and by 0.045 kg·ha-1 applied at either a 2- or 3-week interval. Chemical name used: [±]-2-[4-[(6 chloro-2 benzoxazolyl)oxy]phenoxy] propanoic acid (fenoxaprop).
Yield tests and evaluation of selected storage root and vine characters were conducted among 12 `Beauregard' sweetpotato [Ipomoea batatas (L.) Lam.] mericlones. Maximum yield differences were 43%, 48%, 79%, and 40% for U.S. #1, canners, jumbos, and total marketable yield, respectively. Additive main effect and multiplicative interaction (AMMI) biplot analysis was useful in graphically presenting the yield differences and stability patterns of mericlones. Differences were also detected in vine length, internode diameter, and internode length. Digital image analysis of U.S. #1 storage roots also revealed differences in storage root minor axis length, roundness, and elongation attributes. The results provide valuable information for enhancing current methods of evaluation and selection of mericlones for inclusion in sweetpotato foundation seed programs.