Search Results
Bermudagrass (Cynodon spp.) turf is often overseeded with a cool-season species such as perennial ryegrass (Lolium perenne L.) to provide an improved winter surface for activities such as golf or athletic events. Perennial ryegrass can become a persistent weed in overseeded turf due to the heat and disease tolerance of improved cultivars. Intermediate ryegrass is a relatively new turfgrass that is a hybrid between perennial and annual ryegrass (L. multiflorum Lam.). Very little information is available on intermediate ryegrass as an overseeding turf. Greenhouse, field, and growth chamber studies were designed to compare two cultivars of intermediate ryegrass (`Transist' and `Froghair') with three cultivars of perennial ryegrass (`Jiffie', `Racer', and `Calypso II') and two cultivars of annual ryegrass (`Gulf' and `TAM-90'). In a greenhouse study, the perennial ryegrass cultivars had finer leaf texture (2.9-3.2 mm), shorter collar height (24.7-57.0 mm), and lower weight/tiller (29-39 mg) than the intermediate and annual cultivars. In the field studies, the intermediate cultivar Transist exhibited improved turfgrass quality (6.1-7.1) over the annual cultivars (4.5-5.8) and the other intermediate cultivar Froghair (5.4-5.7). However, neither of the intermediate cultivars had quality equal to the perennial ryegrass cultivars (7.0-7.9). The perennial ryegrass cultivars exhibited slow transition back to the bermudagrass compared to the annual and intermediate ryegrass cultivars. In the growth chamber study, the annual and intermediate cultivars all showed increased high-temperature stress under increasing temperatures compared to the perennial cultivars, which did not show stress until air temperature exceeded 40 °C. Collectively, these studies indicate that the intermediate ryegrass cultivar Transist may have promise as an overseeding turfgrass due to its improved quality compared to annual types and a lack of heat tolerance relative to perennial cultivars, but with transition qualities similar to perennial ryegrass.
Seed coating has been effectively used in the agricultural and horticultural industries for over 100 years. Recently, several turfgrass seed companies have been applying seed coating technologies to commercial seed lines, but there have been limited studies that have demonstrated a positive benefit of seed coating to turfgrass seed. The objective of this study was to determine the effects of two commercially available seed coating technologies, including a fungicide/biostimulant coating and a starch-based polymer coating, on tall fescue (Festuca arundinaceae) and kentucky bluegrass (Poa pratensis) in three soil types. Coated seeds were obtained from a retail outlet. Non-coated seed samples were developed by removing the coating from the seed just before planting. Neither coating technology had an effect on tall fescue speed of germination or total germination percentage in any of the soil types. Seed coating did have a positive effect on the speed of germination of kentucky bluegrass in a sandy loam soil, but did not improve the speed of germination or percentage emergence in the other soil types. These results support earlier findings that seed coating has minimal effects on establishment of turfgrass species. However, these coatings may provide benefits when attempting to establish turfgrasses in less than ideal conditions.
Establishment of zoysiagrass (Zoysia japonica Steud.) from sprigs is often impractical for golf courses and sports fields because of the slow growth rate of the species and subsequent long establishment period. A study was conducted at two different sites in Arkansas to evaluate the effects of soil topdressing and post-plant fertility rates on establishment of zoysiagrass from vegetative sprigs. Each site was planted according to standard methods using freshly-harvested sprigs (18 m3/ha) and either top dressed with 1.0 cm of native soil or maintained without topdressing. Beginning immediately after establishment, N was applied monthly at rates of 0, 1.25, 2.50, 3.75, or 5.0 g·m-2 as urea. Rate of cover was monitored throughout the growing season and elemental analysis of plant tissues was determined 120 days after planting. Topdressing the sprigs with native soil significantly improved establishment compared to traditional sprigging at both sites, presumably because of enhanced sprig survival. Applications of N during the establishment period had little or no overall effect on establishment, although the 0 g·m-2 rate was slightly inferior to all other rates. This study indicates that methods that enhance sprig survival are more important than added fertility for the rapid establishment of zoysiagrass sprigs.
Abstract
A comparative study in 1979 and 1980 between ‘Anjou’, a long-keeping winter pear and ‘Bose’, a shorter keeping winter pear (both Pyrus communis L.) revealed that ethanol-insoluble matter, titratable acids, soluble solids, proteins, and free amino acids in fruit of both cultivars during fruit development, maturation, and storage period fluctuated from season to season and were not associated with their difference in postharvest life. Malic acid was the major fraction of organic acids in both cultivars, and it declined at a faster rate in ‘Bosc’ than in ‘Anjou’ during storage at −1.1°C. The amounts of citric, oxaloacetic, and fumaric acids were higher in ‘Bosc’ than in ‘Anjou’ and were maintained at constant levels throughout the storage period. Internal ethylene in both cultivars early in fruit development was about 0.3 ppm and decreased rapidly to below 0.07 ppm during late fruit development and harvest period. For 2 seasons, ‘Bosc’ was capable of ripening after less than 20 days of chilling at −1.1°C when its internal ethylene increased to 0.2 ppm, while ‘Anjou’ required at least 50 days of chilling to develop the ripening capacity coincident with an internal ethylene above 2.0 ppm. Internal ethylene accumulated in ‘Bosc’ about 8 times faster than in ‘Anjou’ during the first 60 days of storage at −1.1° and reached an equilibrium at 40 ppm for ‘Bosc’ and only 5 ppm for ‘Anjou’ during the remaining storage period. After any corresponding period of cold storage, both ethylene and CO2 productions of ‘Bosc’ at ripening temperature of 20° were higher than those of ‘Anjou’, and ‘Bosc’ also required fewer days to reach the climacteric peaks than did ‘Anjou’.
Most pollinating insects require a season-long succession of floral resources to fulfill life-cycle requirements. Incorporating forbs into turfgrass sites may create a season-long sequence of flowers to support foraging pollinators. However, persistence of forbs in warm-season turfgrasses such as bermudagrass (Cynodon spp.) may be affected by the competitive nature of the turfgrass and routine management practices such as mowing. A 2-year study was conducted to evaluate seven forbs (Bellis perennis L., Lotus corniculatus L., Prunella vulgaris L., Trifolium fragiferum L. ‘Fresa’, Trifolium repens L. ‘Durana’ and ‘Resolute’, Trifolium subterraneum L.) for persistence and ability to produce floral resources for pollinating insects in a low maintenance bermudagrass lawn. Plugs of each species were incorporated into ‘Riviera’ bermudagrass in Apr. 2016. Vegetative cover, flower production, flowering period and pollinator foraging were assessed. Prunella vulgaris bloomed July through August and achieved 100% cover (0% bermudagrass) by 2017. Trifolium repens achieved a more balanced competitive density with the bermudagrass and produced flowers from June through August in both years. Trifolium fragiferum persisted over two growing seasons but only bloomed in 2017. Bellis perennis, Lotus corniculatus and Trifolium subterraneum did not persist. Pollinators were observed foraging on all persistent, flowering forbs, including Trifolium repens, Prunella vulgaris, and Trifolium fragiferum. Trifolium repens and Prunella vulgaris produced the most flowers and attracted the most pollinators.
Zoysiagass (Zoysia japonica) use continues to expand on golf courses, home lawns, and sports fields in the transition zone. Unfortunately, the slow growth rate of the species and long establishment period have limited its use to those sites that can afford zoysiagrass sod. The development of sprig-planting techniques that can produce a zoysiagrass turf in a single season would considerably increase the use of this desirable species. A study was conducted over 2 years at two different regions in Arkansas to evaluate the efficacy of a new zoysiagrass net-planting technique (ZNET) on establishment of zoysiagrass from vegetative sprigs. The technique involves rolling the sprigs onto the site in cotton netting and top-dressing the sprigs with 1.0 cm (0.4 inch) of native soil. This technique was compared to a standard sprig-planting technique and a standard sprig planting that was also top-dressed with 1.0 cm of native soil. The standard treatments were planted according to established methods using freshly-harvested sprigs applied at a rate of 70.0 m3·ha-1 [800 bushels (1000 ft3) per acre]. Rate of turfgrass cover was monitored throughout the growing season. The ZNET planting technique significantly improved establishment over the traditional sprigging technique and the turf reached about 85% cover by the end of the growing season (120 days). Top-dressing a traditionally sprigged area with native soil also improvedestablishment compared to traditional sprigging and was comparable to the ZNET technique. It was concluded that the ZNET technique did improve establishment rates of zoysiagrass, but the same results could be attained by top-dressing sprigs that were planted with a standard planter.
Covers, mulches, and erosion-control blankets are often used to establish turf. There are reports of various effects of seed cover technology on the germination and establishment of warm-season grasses. The objective of this study was to determine how diverse cover technologies influence the establishment of bermudagrass (Cynodon dactylon), buffalograss (Buchloe dactyloides), centipedegrass (Eremochloa ophiuroides), seashore paspalum (Paspalum vaginatum), and zoysiagrass (Zoysia japonica) from seed. Plots were seeded in June 2007 or July 2008 with the various turfgrass species and covered with cover technologies, including Curlex, Deluxe, and Futerra products, jute, Poly Jute, polypropylene, straw, straw blanket, Thermal blanket, and the control. Establishment was reduced in straw- and polyethylene-covered plots due to decreased photosythentically active radiation penetration or excessive temperature build-up, respectively. Overall, Deluxe and Futerra products, jute, and Poly Jute allowed for the highest establishment of these seeded warm-season grasses.
Early-spring flowering bulbs can increase biodiversity while adding color to lawns and other grassy areas. However, few studies have investigated whether bulbs can flower and persist in warm-season lawns or provide feeding habitat for pollinating insects. Thirty early-spring flowering bulbs, including species of Anemone, Chionodoxa, Crocus, Eranthis, Hyacinthus, Ipheion, Iris, Leucojum, Muscari, and Narcissus, were established in bermudagrass (Cynodon dactylon L. Pers) and buffalograss [Buchloe dactyloides (Nutt.) J.T. Columbus] lawns in late autumn 2015 in Fayetteville AR. Bulbs were assessed over three growing seasons for flowering characteristics, persistence, and their ability to attract pollinating insects. A growing degree day model was also developed to predict peak flowering times in our region. Numerous bulb entries produced abundant flowers in bermudagrass and buffalograss lawns in the first year after planting, but persistence and flower production were reduced in both the second and third years of the trial. Five bulbs persisted for multiple years in both turfgrass species and continued to produce flowers, including Crocus flavus Weston ‘Golden Yellow’ (crocus), Leucojum aestivum L. (spring snowflake), Narcissus (daffodil) ‘Baby Moon’, Narcissus ‘Rip Van Winkle’, and Narcissus ‘Tete-a-Tete’. Several bulbs, primarily crocuses and Muscari spp. (grape hyacinth), were also observed to attract pollinating insects, principally honey bees (Apis mellifera). These results demonstrate that some early-spring bulbs can persist in competitive warm-season turfgrasses, while providing pollinator forage, but species and cultivar selection is critical for long-term success.