Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: M.D. Cahn x
Clear All Modify Search
Free access

P.R. Johnstone, T.K. Hartz, M.D. Cahn and M.R. Johnstone

Decades of heavy phosphorus (P) fertilization of vegetable crops in the Salinas Valley of California has increased soil test P (STP) levels, with bicarbonate-extractable P (Pbc) values >50 mg·kg–1 now common. To evaluate the response of lettuce (Lactuca sativa L.) to P fertilization in fields with elevated STP levels, 12 trials were conducted in commercial fields during 2002–03. Initial Pbc at the trial sites varied from 53 to 171 mg·kg–1. In each trial, four replicate plots receiving the growers' P application were compared with paired plots in which no P was applied. Leaf P was monitored at midseason and at harvest. At harvest, mean whole and marketable plant mass and percent of marketable plants were recorded. A significant increase in lettuce yield with P fertilization was achieved at only one trial site, a spring planting with 54 mg·kg–1 Pbc; at all other sites, including three with Pbc <60 mg·kg–1, P application resulted in no significant yield increase. Phosphorus application resulted in only a marginal increase in plant P uptake; in the nonresponsive fields leaf P concentration of nonfertilized plots was in excess of established sufficiency levels. In a laboratory study, the correlation of Pbc to bioavailable P (Pba) was evaluated using 30 representative Salinas Valley soils; Pbc varied among these soils from 15 to 177 mg·kg–1. Pba was estimated by P adsorption on an anion resin membrane during a 16 hour incubation. The effect of temperature on P bioavailability in six of these soils was estimated by conducting the Pba incubation at 5, 15, and 25 °C. Pba was highly correlated with Pbc (r = 0.89), and increased about 40% across soils with each 10 °C increase in soil temperature. Therefore, Pbc was determined to be an accurate reflection of bioavailable P in these soils, although the addition of a temperature correction factor in setting threshold values is desirable.

Free access

H.H. Krusekopf, J.P. Mitchell, T.K. Hartz, D.M. May, E.M. Miyao and M.D. Cahn

Overuse of chemical N fertilizers has been linked to nitrate contamination of both surface and ground water. Excessive fertilizer use is also an economic loss to the farmer. Typical N application rates for processing tomato production in California's Central Valley are 150-250 kg·ha-1, and growers generally fail to fully consider the field-specific effects of residual soil NO3-N concentration, or N mineralization potential of the soil. The purpose of this research was to determine the effects of sidedress N fertilizer application, residual soil NO3-N, and in-season N mineralization, on processing tomato yield. Research was conducted during the 1998 and 1999 growing seasons at 16 field sites. Pre-sidedress soil nitrate concentration was determined at each trial site to a depth of 1 m, and aerobic incubation tests were conducted on these soils (top 0.3 m depth) to estimate N mineralization rate. Sidedress fertilizer was applied at six incremental rates from 0 to 280 kg N/ha, with six replications of each treatment per field. Only five fields showed yield response to fertilizer application; yield response to fertilizer was associated with lower pre-sidedress soil nitrate levels. In most fields with fertilizer response, yield was not increased with sidedress N application above 56 kg·ha-1. Mineralization was estimated to contribute an average of ≈60 kg N/ha between sidedressing and harvest. These results suggest that N fertilizer inputs could be reduced substantially below current industry norms without lowering yields, especially in fields with higher residual soil nitrate levels.

Free access

H.H. Krusekopf, J.P. Mitchell, T.K. Hartz, D.M. May, E.M. Miyao and M.D. Cahn

Overuse of chemical N fertilizers has been linked to nitrate contamination of both surface and ground water. Excessive use of fertilizer also is an economic loss to the farmer. Typical N application rates for processing tomato (Lycopersicon esculentum Mill.) production in California are 150 to 250 kg·ha-1. The contributions of residual soil NO3-N and in-season N mineralization to plant nutrient status are generally not included in fertilizer input calculations, often resulting in overuse of fertilizer. The primary goal of this research was to determine if the pre-sidedress soil nitrate test (PSNT) could identify fields not requiring sidedress N application to achieve maximum tomato yield; a secondary goal was to evaluate tissue N testing currently used for identifying post-sidedress plant N deficiencies. Field experiments were conducted during 1998 and 1999. Pre-sidedress soil nitrate concentrations were determined to a depth of 60 cm at 10 field sites. N mineralization rate was estimated by aerobic incubation test. Sidedress fertilizer was applied at six incremental rates from 0 to 280 kg·ha-1 N, with six replications per field. At harvest, only four fields showed a fruit yield response to fertilizer application. Within the responsive fields, fruit yields were not increased with sidedress N application above 112 kg·ha-1. Yield response to sidedress N did not occur in fields with pre-sidedress soil NO3-N levels >16 mg·kg-1. Soil sample NO3-N levels from 30 cm and 60 cm sampling depth were strongly correlated. Mineralization was estimated to contribute an average of 60 kg·ha-1 N between sidedressing and harvest. Plant tissue NO3-N concentration was found to be most strongly correlated to plant N deficiency at fruit set growth stage. Dry petiole NO3-N was determined to be a more accurate indicator of plant N status than petiole sap NO3-N measured by a nitrate-selective electrode. The results from this study suggested that N fertilizer inputs could be reduced substantially below current industry norms without reducing yields in fields identified by the PSNT as having residual pre-sidedress soil NO3-N levels >16 mg·kg-1 in the top 60 cm.

Free access

T.K. Hartz, G. Miyao, R.J. Mullen, M.D. Cahn, J. Valencia and K.L. Brittan

A survey of 140 processing tomato (Lycopersicon esculentum Mill.) fields in central California was conducted in 1996-97 to examine the relationship between K nutrition and fruit quality for processing. Quality parameters evaluated were soluble solids (SS), pH, color of a blended juice sample, and the percent of fruit affected by the color disorders yellow shoulder (YS) or internal white tissue (IWT). Juice color and pH were not correlated with soil K availability or plant K status. SS was correlated with both soil exchangeable K and midseason leaf K concentration (r = 0.25 and 0.28, p < 0.01) but the regression relationships suggested that the impact of soil or plant K status on fruit SS was minor. YS and IWT incidence, which varied among fields from 0% to 68% of fruit affected, was negatively correlated with K status of both soil and plant. Soil exchangeable K/√Mg ratio was the measure of soil K availability most closely correlated with percent total color disorders (YS + IWT, r = -0.45, p < 0.01). In field trials conducted to document the relationship between soil K availability and the fruit color disorders, soil application of either K or gypsum (CaSO4, to increase K/√Mg ratio) reduced YS and total color disorders. Multiple foliar K applications were effective in reducing fruit color disorders at only one of two sites. In no field trial did K application improve yield, SS, or juice color.

Full access

N.M. Madden, J.P. Mitchell, W.T. Lanini, M.D. Cahn, E.V. Herrero, S. Park, S.R. Temple and M. Van Horn

Field experiments were conducted in 2000 and 2001 in Meridian, Calif. to evaluate the effects of cover crop mixtures and reduced tillage on yield, soil nitrogen (N), weed growth, and soil moisture content in organic processing tomato (Lycopersicum esculentum) production. The trial was set up as a randomized complete-block design with eight treatments consisting of a 2 × 3 (cover crop × tillage) factorial design, a fallow control (F) and a single strip-till (ST) treatment. Cover crop mixtures were either legumes (L), common vetch (Vicia sativa), field pea (Pisum sativum) and bell bean (Vicia faba), or those legumes with grasses (GL), annual ryegrass/triticale (Lolium multiflorum/xTriticosecale) in 2000; cereal rye (Secale cereale)/triticale in 2001. Tillage treatments included an incorporation of the cover crop at planting (IP), a delayed incorporation (DI) (17 to 19 days after planting), and no-till (NT). Due to regrowth of the annual ryegrass in 2000, tomato fruit yields in 2000 were reduced by 50% to 97% within all GL treatments. However, regrowth of the cover crop was not a problem in 2001 and yields were not different among treatments. Total percent weed cover was 1.6 to 12.5 times higher in NT than IP treatments in 2000 and 2.4 to 7.4 times higher in 2001 as weed pressure was mainly affected by tillage practices and less by cover crop type. In 2000, available soil N was 1.7 to 9.4 times higher in L than GL treatments and was significantly influenced by tillage, but there were no treatment effects in 2001 due to a 60% reduction in weed pressure and minimal or no cover crop regrowth. Soil moisture content did not differ between treatments in either year. These results demonstrate the importance of appropriate selection and termination of cover crops for their successful adoption in organic conservation tillage systems.