Search Results

You are looking at 1 - 10 of 18 items for

  • Author or Editor: M.A. Bennett x
Clear All Modify Search
Authors: and

Osmopriming has been shown to enhance seed performance by increasing germination rates and uniformity. Furthermore, these enhancements persist under less-than-optimum conditions, such as salinity, reduced water availability, and excessively high or low temperatures. Additional benefits include resistance to soil pathogens due to lower leachate levels and more rapid emergence. To augment these existing qualities, it would be advantageous to incorporate beneficial organisms that antagonize soil-borne diseases, combining the benefits of both systems into a single procedure. To accomplish this, processing tomato seeds (Lycopersicon esculentum Mill. OH8245) were bioprimed in aerated –0.8 Mpa NaNO3 at 20°C for 4 days, at which time a mixture of nutrient broth, a defoaming agent, and beneficial bacteria that has been adjusted to the same osmotic potential is added. The bacteria used, Pseudomonas aureofaciens AB254, has been proved to control Pythium ultimum on a variety of crop seeds. After 7 days the seeds are removed having been primed and colonized with 105 colony forming units (cfu)/seed. In the absence of pathogen pressure, osmoprimed and bio-osmoprimed seeds performed similarly improving overall germination by 40% after 3 days, as well as low temperature (10–15°C) germination. However, when these seeds were sown in soilless media inoculated with P. ultimum, osmoprimed and bio-osmoprimed emergence was 57% and 74%, respectively, showing the improvements that these biologicals can provide. Thermogradient table results, storage tests, cfu/seed, and pathogen control will be discussed.

Free access
Authors: and

Some transplanted crops, like tomato and marigolds, tend to stretch very early after germination, especially if grown in low light environments. By the time growers apply growth regulators (PGRs), the stretching of the hypocotyl has already occurred and sprays are ineffective. Seeds of marigold `Bonanza Gold' and tomato `Sun 6108' were soaked for 6, 16, and 24 h in paclobutrazol solutions of 0, 500, and 1000 ppm. After imbibition, seeds were dried for 24 h before sowing in plugs. Sixteen, 26, and 36 days after sowing, seedling height and percent emergence were measured. Increasing concentrations of PGR and time of imbibition produced shorter seedlings. Tomato seedling heights measured 36 days after sowing were 1.9, 1.5, and 1.7 cm when imbibed in water for 6, 16, and 24 h, respectively. When PGR was used at 500 ppm, seedling heights were: 1.4, 1.2, and 1.2 cm, respectively. Similar reductions were observed for marigolds. It was hypothesized that some seeds have coats that are impermeable to PGRs. These impermeable coats might serve as PGR carriers, delivering the chemical into the growing medium of the plug cell. When the root emerges from the seed, it absorbs the growth regulator. These preliminary results indicate that this method of PGR application may be feasible and could benefit plug growers of marigold and other ornamental plant species prone to early stretching (e.g., cosmos).

Free access
Authors: and

Bedding plants and many vegetable crop seeds are often sown in plug trays. Some crops, like marigold (Tagetes sp. L.), tend to stretch early after germination, especially if grown in low light environments. By the time growers apply plant growth regulators (PGRs), stretching of the hypocotyl has already occurred and seedling applications are ineffective. Seedling height may be controlled by applying the plant growth regulator directly to the seed. Seeds of `Bonanza Gold' marigold (Tagetes patula L.), `Cherry Orbit' geranium (Pelargonium {XtimesX} hortorum L.H. Bailey), and `Sun 6108' tomato (Lycopersicon esculentum Mill.) were soaked for 6, 16, or 24 hours in paclobutrazol solutions of 0, 500, or 1000 mg·L-1. After the soak treatment, seeds were dried for 24 hours prior to laboratory germination testing or sowing in plug trays. Percentage of emergence and seedling height were measured 16, 26, and 36 days after sowing. Laboratory germination of treated seeds was less than that of the control, which was attributed to the PGR being concentrated around the seed on the blotters. In contrast, seedling survival was unaffected in plugs. The higher concentration of PGR and longer times of soaking increased growth regulation, but also inhibited emergence of geraniums (71% vs. 99%). When seeds were imbibed 6, 16, or 24 hours, growth restriction was 31%, 31%, and 40%, respectively, for tomato, 61%, 37%, and 76%, respectively, for geranium and 30%, 38%, and 41%, respectively, for marigold. These results indicate that PGR application to geranium, marigold, and tomato seeds may be feasible using a 6- or 16-hour soak in 500 mg·L-1 paclobutrazol. Chemical name used: (±)-(R *,R *)-ß-[(4-chlorophenyl)methyl]-{XsalphaX}-(1,1-dimethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).

Free access

Processing tomato (Lycopersicon esculentum Mill.) producers in the Great Lakes region have expressed interest in cutting crop establishment costs and improving profitability by reducing plant populations. This study compared plant development, fruit set, fruit size and yields using a range of single and twin-row plant populations (14,800 to 44,500 plants/ha) and four commercially important processing tomato cultivars (`OH8245', `H9036', `PS696', and `H7135') with differing vine types and maturities. The 3-year study was conducted at Fremont, Ohio, on a Colwood fine sandy loam, using raised beds and other standard cultural practices. Six- to seven-week-old transplants (288 cell size) were mechanically planted in middle to late May. Once-over harvest was timed to achieve 80%–90% red fruit, using a Johnson tomato harvester. Plant population had a significant effect on 1995 fruit yields for all cultivars tested. Optimum red fruit yields were observed at 37,100 plants/ha in twin-rows for `OH8245', which was similar to 1994 results. Optimum fruit yields for `PS696' were obtained at twin-row populations of 29,600-44,500 plants/ha in 1995. Three year results for `OH8245' (medium-sized vine) indicate no significant differences due to plant population or arrangement. Mean red fruit yields varied considerably by year in this field research (62.7, 95.2, and 44.8 MT/ha in 1993, 1994, 1995 respectively), but twin-row spacing of `OH8245' provided significant yield gains in 2 of 3 years for populations of 29,600 plants/ha or greater.

Free access
Authors: and

Improved germination under unfavorable soil conditions is an important safeguard against yield losses in direct-seeded crops. Osmoprimed seed has been shown to provide earlier and more uniform germination as well as improve low temperature germination. These attributes combined with the reduced rates of damping-off associated with Pseudomonas aureofaciens AB254 creates a bioosmopriming seed treatment that provides rapid germination under a wider range of soil temperatures while exhibiting the disease resistance and improved growth associated with bacterial coatings. The objective of this work is to combine biopriming and osmopriming into one procedure, thus creating an environment for adequate seed hydration and rapid multiplication of beneficial bacteria which will thoroughly colonize the seed surface. Processing tomato seeds (Lycopersicon esculentum Mill. `OH8245') were bio-osmoprimed in aerated –0.8 MPa NaNO3 at 20°C for 4 days. On the fourth day, a mixture of nutrient broth, a defoaming agent, and bacteria that have been adjusted to the same osmotic potential is added. This is done so that the removal of seeds from the tank at the end of the 7-day treatment coincides with peak populations of bacteria. Pseudomonas aureofaciens AB254 multiplies very rapidly in this environment, with colony forming units for tomato averaging 4 × 105/seed. Results will also be reported for cucumber seed (Cucumis sativus L. `Score'), which were treated using a similar procedure. Bacterial populations per seed, germination characteristics and pathogen control will be discussed.

Free access

Abstract

A new technique, termed hydraircooling, was evaluated for precooling fruit of peach (Prunus persica (L.) Batsch) packed in DU-ALL or similar type containers. Cooling rate was determined with respect to air and waterflow. Waterflow rates of 3.63 and 5.44 ml/minute were tested at each of 4 airflow rates (1070, 2140, 3210 and 4280 ml/second). Half-cooling times, with respect to airflow, ranged from 0.460 to 0.348 hour on top and 0.672 to 0.451 hour on the bottom of the container at 3.63 ml/minute waterflow. At the 5.44 ml/minute waterflow, respective half-cooling times ranged from 0.470 to 0.328 hour on top and 0.511 to 0.249 hour on the bottom. The peaches in these tests were 6.35 cm in diameter. In tests to compare hydraircooling with forced-air precooling, using 7 cm diameter peaches, respective half-cooling times were 0.433 hour compared to 0.516 hour on top and 0.523 hour compared to 0.731 hour on the bottom at an airflow of 2140 ml/second and a waterflow in the hydraircooler of 3.63 ml/minute. Cooling rate increased in relation to air and waterflow with the greater significance being obtained in relation to waterflow.

Open Access

Low-vigor seeds of black-eyed Susan (Rudbeckia fulgida Ait.) primed in aerated -1.3 MPa KNO3 for 7 days at 30C in darkness had double the total germination percentage at 30C and one-half the mean time of germination as nonprimed seeds. Priming the seeds in polyethylene glycol rather than KNO3 generally resulted in lower total germination percentage and longer mean time of germination. Osmotic priming increased total germination percentage and germination rate of seeds germinated at 21.9 to 32.2C, but the priming benefit on total germination percentage was greater at ≤27.6C. Total germination percentage of primed and nonprimed seeds was highest at 28.8 to 32.2C.

Free access

Germination trials of three seedlots were conducted over a temperature gradient for 14 days to determine the optimal germination temperature for the Black-eyed Susan (Rudbeckia fulgida Ait.). The optimal germination temperature for R. fulgida seeds was 30 ± 1C. All three seedlots began germination (radicle emergence) on the second day at 30.2C. By day four, all seedlots sur-passed 50% germination, with three seedlots germinating 53%, 52%, and 73%. Mean germination percentages were higher between 28.3 and 32.6C than at temperatures above or below this range. Significantly higher germination percentages and enhanced germination rates attained at the elevated temperatures may save time, cut production costs, and decrease exposure to detrimental pre-emergent pathogenic fungi.

Full access

Ethephon (2-chloroethyl phosphonic acid) has been widely used under field conditions as a growth regulator to trigger the ripening of processing tomatoes prior to mechanical harvesting. Recent interest in whole-peeled and diced tomato products has raised questions about ethephon rates, and possible split applications for top quality. This 3-year field study tested two commercial cultivars of processing tomatoes (`OH8245' and `P696') and the effect of various ethephon applications on fruit firmness, color uniformity, and peeling variables. Transplants were established in mid to late May of 1996–1998 on raised beds in single rows at the OSU/OARDC Veg. Crops Branch in Fremont, Ohio. Ethrel applications for each cultivar were: 0, 0.58, 0.58 × 2 applications, 1.17, 1.17 × 2 applications, 1.75, 2.34, 4.68, and 7.02 L·ha–1. Fruit were tested for firmness, color uniformity, pH, titratable acids, and soluble solids. Samples from ethephon treatments of 0, 1.17 × 2 applications, 2.34, 4.68, and 7.02 L·ha–1 were peeled and canned for color inspection and firmness after 18 months storage. Three-year data for red fruit yield showed a typical response to increasing amounts (0 to 7.0 L·ha–1) of applied ethephon. While high rates (4.7 or 7.0 L·ha–1) gave some of the highest red fruit yields, and the greatest percent red fruit values, high rates were also linked with among the lowest fruit solids values. Split application comparisons showed little influence on quality variables examined in this study. However, chroma values were improved (more vivid color) when 2.3 L·ha–1 was applied vs. 1.17 L·ha–1 applied twice. Split applications also tended to produce softer fruit. Our results suggest that single ethephon applications of 1.17 to 2.34 L·ha–1 provide optimal fruit ripening and quality under midwestern U.S. conditions.

Free access

The specialty vegetable market is a rapidly expanding niche in the produce industry. One popular sector of this market is focused on heirloom tomatoes. Heirloom varieties, mostly open-pollinated, are often favored for their taste and unique shapes and colors. Older, traditional varieties have been maintained mostly by home gardeners, seed saver organizations, and government germplasm centers, but are becoming increasingly popular with commercial growers, consumers, and seed companies. Special growing techniques and attention to postharvest handling is also necessary with heirloom tomatoes because most do not have an extended shelf life. For growers willing to develop special harvesting and handling techniques, specialty tomatoes offer colors, shapes, and flavors that are an important part of today's cuisine. Performance of a given cultivar will vary from year to year depending on several factors: planting date, irrigation, disease pressure, staking practices, and climatic conditions during the growing season. Fourteen heirloom tomato cultivars have been researched at Ohio State Univ. (OSU) since 1995. Data collected on yield, fruit characteristics, market outlets, cultural information, special harvesting and handling requirements, and disease pressure for heirloom cultivars will be presented.

Free access