Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: M. Valdez x
Clear All Modify Search

Marigolds are one of the most popular annual ornamental plants; both, the short-stature cultivars (Tagetes patula L.) and the taller cultivars (T. erecta L.) are used as container plants in landscape and garden settings. Tagetes erecta varieties can also make excellent cut and dried flowers for the florists' market. The present study was conducted to evaluate the response of T. patula ‘French Vanilla’ and T. erecta ‘Flagstaff’ and ‘Yellow Climax’ to irrigation with saline water with and without pH control. Marigold plugs were transplanted into greenhouse sand tanks and established for 1 week under nonsaline conditions. Ten treatments were then applied with electrical conductivities of irrigation water (ECw) of 2, 4, 6, 8, and 10 dS·m−1 and pH levels of 6.4 and 7.8. Growth of all three cultivars decreased in response to irrigation with saline waters at pH 6.4. Compared with the nonsaline controls, ‘French Vanilla’ exhibited a 20% to 25% decrease in plant height, leaf dry weight (DW), and shoot DW when irrigated with 4 dS·m−1 water. However, the number of flowering shoots and the diameter and number of flowers were not significantly affected until the ECw exceeded 8 dS·m−1. Growth of ‘Flagstaff’ and ‘Yellow Climax’ also decreased as ECw increased. Shoot DW of the tall cultivars decreased by 30% and 24%, respectively, in response to the 4 dS·m−1 treatment, but additional salt stress had no further effect on DW production. Marigolds were highly sensitive to high pH. Plants irrigated with nonsaline water with pH at 7.8 exhibited a 50%, 89%, and 84% reduction in shoot DW in ‘French Vanilla’, ‘Flagstaff’, and ‘Yellow Climax’, respectively, compared with plants irrigated with water with pH 6.4. Marigold cultivars were rated as moderately tolerant to salinity because growth was affected when water ECw exceeded 8 dS·m−1. Salinity tended to reduce internode elongation, resulting in attractive plants. Compactness was not increased as a result of a decrease in DW, resulting in attractive plants, which show great promise as bedding or landscape plants in salt-affected sites provided that the pH of the soil solutions remains acidic. Under our experimental conditions in the sand tank system, the ECw was essentially equivalent to those of the sand soil solution; however, considering that the EC of the sand soil solution is ≈2.2 times the EC of the saturated soil extract (ECe), our salinity treatments may be estimated as 0.91, 1.82. 2.73, 3.64, and 4.55 dS·m−1. Thus, the threshold ECw at which marigold cultivars exhibited acceptable growth, 8 dS·m−1, would be equivalent to ECe of 3.64 dS·m−1.

Free access

Ranunculus, grown as a field crop in southern and central coastal California, is highly valued in the cut flower and tuberous root markets. However, concerns regarding the sustainability of ranunculus cultivation have arisen when the plantations are irrigated with waters of marginal quality because the viability of the tuberous roots may be compromised. A study was initiated to evaluate the effect of saline irrigation waters, with and without pH control, on the growth of plants and tuberous roots of ranunculus. Treatments consisted of four irrigation water solutions with increasing concentration of Ca2+, Mg2+, Na+, SO4 2−, and Cl to meet an electrical conductivity (EC) of 2, 3, 4, and 6 dS·m−1 and pH 6.4. The 3, 4, and 6 dS·m−1 solutions were replicated with uncontrolled pH, which averaged 7.8 over the trial. Ranunculus ‘Yellow ASD’ and ‘Pink CTD’ seedlings were transplanted into greenhouse sand tanks and irrigated twice daily with treatment solutions. Shoot dry weight of plants irrigated with 2 dS·m−1 solutions was 7.20 g and 6.66 g in ‘Yellow ASD’ and ‘Pink CTD’, respectively; however, increasing EC from 2 to 3 dS·m−1 induced an 83% and 78% decrease, respectively. Tuberous root fresh weight of control plants, 7.45 g and 8.42 g for ‘Yellow ASD’ and ‘Pink CDT’, respectively, was decreased by 82% and 89% when EC was 6 dS·m−1. High pH of irrigation water caused an additional decrease in shoot dry weight and tuberous root weight. In control plants, 83% and 76% of tuberous roots of ‘Yellow ASD’ and ‘Pink CTD’, respectively, that were transplanted in the following season produced new shoots; however, tuberous roots sprouting percentage from plants irrigated with EC 4 dS·m−1 water decreased to 42.9% and 58.3% and to 11.1% and 45.0% with EC 6 dS·m−1. The hypersensitivity of ranunculus to salinity was associated with a significant decrease in Ca2+ and K+ tissue concentration. In ‘Yellow ASD’, Ca2+ decreased from 202 mmol·kg−1 in control plants to 130 mmol·kg−1 in plants irrigated with 3 dS·m−1 solutions and pH 6.4. In ‘Pink CTD’, the decrease was from 198 mmol·kg−1 to 166 mmol·kg−1. Potassium was similarly affected. Compared with control plants (405 mmol·kg−1), shoot Na+ concentration was increased by 101% in ‘Yellow ASD’ and by 125% in ‘Pink CTD’ when irrigated with 6 dS·m−1 water. Salt sensitivity of ranunculus, as determined by growth of the flowering stems and viability of the tuberous roots, was increased by irrigation with alkaline waters, which was associated with additional increases in Na+ and Cl tissue concentration and decreased iron accumulation. Hypersensitivity to salinity makes ranunculus crop a poor candidate for water reuse systems; however, further research is warranted to elucidate the possibility of enhancing its tolerance to salinity by supplemental Ca2+ and K+ and acidification of irrigation water.

Free access

Scarcity of good-quality water for landscape irrigation is a major concern in arid and semiarid regions as a result of the competition with the urban population. Competing claims from urban, agricultural, environmental, and industrial groups leaves less water or water of lower quality for use in landscape maintenance. Although degraded waters, high in both salinity and alkaline pH, may challenge plant establishment and growth, these waters must be considered as valuable alternatives to the use of fresh water resources for landscape sites. The objective of the present study was to determine the effect of irrigation with saline water, with and without pH control, on the mineral ion relations of three marigold cultivars: Flagstaff, Yellow Climax, and French Vanilla. Treatments were five electrical conductivities of irrigation water (ECw): 2, 4, 6, 8, and 10 dS·m−1, and two pH levels: 6.4 and 7.8. Plants of ‘French Vanilla’ and flowering stems of ‘Flagstaff’ and ‘Yellow Climax’ were harvested at flower maturity. Leaves of the taller cultivars, Flagstaff and Yellow Climax, were collected separately from the main axis and from the lateral stems, whereas in ‘French Vanilla’, leaves were combined. Total sulfur, total phosphorus, Ca2+, Mg2+, Na+, K+, Cl, Fe2+, Zn2+, Cu2+, and Mn2+ concentrations in leaf and stem tissues were determined. The three marigold cultivars were strong Ca2+-accumulators and this response was more evident at the lower pH level. However, leaf Ca2+ tended to decrease as salinity increased despite a threefold increase in substrate Ca2+. Leaf Mg2+ increased as salinity increased and main stem leaves of the taller cultivars accumulated more Mg2+ than leaves on the lateral branches. The reverse was true for leaf K+; leaves on the lateral branches were stronger K+-accumulators than those on the main stem. Potassium concentrations in leaves of marigold irrigated with waters at pH 6.4 tended to decrease as ECw increased. Marigold seems to possess an efficient Na+ exclusion mechanism, which restricts Na+ accumulation in the leaves. Patterns of total phosphorus accumulation in leaf tissues were not consistent over the range of ECw treatments. Among the micronutrients, Fe2+ and Mn2+ tended to be partitioned to the younger rather than the older leaves. The decrease in marigold growth was associated with nutrient ion imbalance as demonstrated by the reduction in K+ concentration and the increase in Mg2+ and Cl in leaf tissue. Despite the reduction in growth, the aesthetic value of the cultivars was not detrimentally affected by application of saline waters with ECw values as high as 8 dS·m−1.

Free access

During the past several years, watermelon trials have been performed in the state, but not as a coordinated effort. Extensive planning in 1997 led to the establishment of a statewide watermelon trial during the 1998 growing season. The trial was performed in five major production areas of the state including: The Winter Garden (Carrizo Springs); South Plains (Lubbock); East Texas (Overton); Cross Timbers (Stephenville); and the Lower Rio Grande Valley (Weslaco). Twenty seedless and 25 seeded hybrids were evaluated at each location. Drip irrigation with black plastic mulch on free-standing soil beds was used to grow entries in each area trial and yield data was recorded in a similar manner for each site. Results were reported in a statewide extension newsletter. Future plans include a continuation of the trial in the hope that multiple-year data will provide a basis for valid variety recommendations for watermelon producers in all areas of the state.

Free access

The uptake of nitrogen (N) in nitrate or ammonium (NH4 +) form affects physiological and metabolic processes and toxicity may develop in plants receiving high concentrations of NH4 +. The objective of the present study was to delineate the response of bell pepper plants to varying proportions of NH4 + combined with increasing concentrations of potassium (K) in the nutrient solution. Bell pepper plants were tolerant to moderate proportions of NH4 + (25% or less or 50% or less); however, higher proportions resulted in growth reduction. The application of higher K concentrations in the nutrient solution did not ameliorate the growth on vegetative plant parts; however, when K was increased to 9 mm, the yield was sustained even when 50% of total N was in the NH4 + form. Decreased shoot:root ratio and harvest index indicated that biomass accumulation was affected more in the shoot than in the root and in the fruit than in the shoot, respectively. There was a lower concentration of NH4 + in the roots compared with leaves, suggesting that the higher K concentration that resulted from the increased K in the nutrient solution was associated with NH4 + translocation through the xylem. A decrease in calcium and magnesium detected in leaves suggests an antagonistic relationship with NH4 + and K in the nutrient solution, which was correlated with the acidification of the growing medium. Higher yields when K was at 9 mm may be the result of the high photosynthetic rate and stomatal conductance (g S) detected in plants fertigated with 25% of total N as NH4 + and the higher leaf water potential when the proportion of NH4 + was 50%. The biochemical composition of fruits was affected because both high NH4 + and increased K resulted in higher ethylene production, lipid peroxidation, superoxide dismutase activity, and carotenoids.

Free access

The present study was conducted to determine the critical optimum and toxic concentrations of potassium (K) using segmented analysis and its relationship with some physiological, anatomical, and nutritional responses to increasing K in hydroponically grown Lilium sp. L. cv. Arcachon. Plants were fertigated with nutrient solutions containing K (Kext) at 0, 2.5, 5.0, 7.5, 12.5, 17.5, 22.5, and 30 mmol·L−1. Maximum flower diameter occurred when, on a dry mass basis, shoot K (Kint) ranged from 504 to 892 mmol·kg−1; however, a lower Kint was required to obtain maximum biomass accumulation and shoot length (384 and 303 mmol·kg−1, respectively). Potassium increased in all plant organs as K in the nutrient solution increased. Nitrogen increased in young leaves and magnesium (Mg) decreased as Kext increased. Concentrations of Kext from 5 to 17.5 mmol·L−1 increased the size of chlorenchyma and occlusive cells; however, metaxylem vessels were unaffected. Net photosynthetic rate was higher in young leaves, whereas water potential increased in both young and mature leaves when Kext was greater than 22.5 mmol·L−1. Critical concentrations varied according to the growth parameter. Optimum Kint ranged from 303 to 384 mmol·kg−1 for vegetative parts, whereas parameters related with flower growth ranged from 427 to 504 mmol·kg−1. Concentration of 504 mmol·kg−1 Kint was associated with optimum growth for all the parameters assessed, whereas a Kint greater than 864 mmol·kg−1 was associated with a decline in growth; thus, these concentrations were considered as the critical optimum and critical toxicity levels, respectively. The optimum and toxicity critical Kint were estimated when Kext in the nutrient solutions was 5.6 and 13.6 mmol·L−1, respectively.

Free access

The domestication of wild orchids for commercial production is a new endeavor, which may represent a sustainable alternative to the collection/harvest from natural populations of threatened or endangered orchid species. In the present study, the growth and nutrition of vegetative plants of Laelia anceps Lindl. as affected by three components of the growing medium (peat, volcanic rock, and/or horticultural grade charcoal) and the nutrient solution concentration, measured as osmotic potential (ψS), were assessed using mixture experiments methodology. Leaf dry mass (DM) was the highest when plants were irrigated with nutrient solutions of –0.076 MPa. The lower leaf DM at lower or higher ψS was influenced by the medium because plants grown in 100% volcanic rock exhibited no effect, whereas plants grown in either 100% charcoal or 100% peat had a marked reduction. Regardless of the ψS of the nutrient solution, the highest leaf DM was observed in mixtures of two components containing charcoal and peat at high proportions. Dry mass of pseudobulbs and roots was highest in plants irrigated with solutions of –0.051 MPa, especially in mixtures with charcoal or 100% peat. Decreasing the ψS of the nutrient solution resulted in increased shoot nitrogen (N) and potassium (K) concentrations and decreased concentration of phosphorus (P), calcium (Ca), magnesium (Mg), boron (B), manganese (Mn), zinc (Zn), and copper (Cu). Increasing charcoal proportion in the growing media resulted in increased plant iron (Fe) and Cu concentration. However, increasing volcanic rock reduced plant P and K and increased Mn concentration. A higher proportion of peat was correlated with a decrease in plant Fe concentration. Leaf DM fit models on which macronutrient:micronutrient or micronutrient:micronutrient ratios were calculated, suggesting that nutrient imbalance may be responsible for a plant’s responses. The coefficients with the higher values included a micronutrient:micronutrient ratio, suggesting that an extremely fine balance in the uptake of a given micronutrient in relation to other micro- or macronutrient is of major importance for adequate growth of Laelia.

Free access

Landscape irrigation is the second largest user of reclaimed water in industrialized countries; however, its high concentration of soluble salts, especially Na+ and Cl, may induce growth reduction and leaf necrosis or bronzing in ornamental species. The present study was conducted to determine the growth and quality responses and nutritional ion imbalances of selected landscape species during the container production phase when subjected to irrigation with water of increasing NaCl + CaCl2 concentrations. Plants of boxwood [Buxus microphylla var. japonica (Mull. Arg. ex Miq) Rehder & E.H. Wilson], escallonia (Escallonia ×exoniensis hort. Veich ex Bean), hawthorn [Raphiolepis indica (L.) Lind. Ex Ker Gawl. × ‘Montic’], hibiscus (Hibiscus rosa-sinensis L.), and juniper (Juniperus chinensis L.) were grown in a greenhouse in the Spring–Summer and in the Fall–Winter in separate experiments. Saline irrigation consisted of solutions with electrical conductivities (ECiw) of 0.6, 2, 4, 6, and 8 dS·m−1 in the Spring–Summer experiment and 0.6, 4, 6, 8, and 12 dS·m−1 in the Fall–Winter. Growth of the five species decreased when irrigated with saline waters. Leaf growth was highly sensitive to salinity and the average decrease in leaf dry weight was the criterion used to rank the tolerance of the species. In the Spring–Summer experiment, the ranking was (higher tolerance to lower tolerance): juniper ∼ boxwood > escallonia > hawthorn > hibiscus, whereas in Fall–Winter, the ranking was: juniper ∼ boxwood > hibiscus > escallonia > hawthorn. The species were ranked according to their visual attractiveness in the Spring–Summer experiment. The threshold ECiw at which visual attractiveness was affected gave the following ranking (higher to lower tolerance): hibiscus > juniper > escallonia > hawthorn > boxwood. Estimating the EC of drainage water from threshold ECiw, boxwood was classified as sensitive, hawthorn as moderately sensitive, escallonia as moderately tolerant, and hibiscus and juniper as highly tolerant. Tolerance of juniper was ascribed to Na+ and Cl retention in the roots observed in both growing seasons and to the higher root biomass that allowed a higher accumulation of salts in this organ, preventing translocation to the leaves. Although boxwood exhibited acceptable tolerance in terms of growth, visual quality severely decreased; in contrast, growth of hibiscus was the most severely reduced but was rated as the most tolerant species in terms of visual quality. This opposite response may be the result of an excellent capacity to compartmentalize salts in hibiscus, whereas in boxwood, this mechanism may be absent.

Free access