Search Results
Genetic transformation of cut roses may greatly facilitate cultivar improvement programs by shortening the time required to introduce new genes into elite germplasm. The biolistic process offers a very promising method for the genetic transformation of roses.
The biolistic process uses high velocity mircoprojectiles (gold or tungsten) to carry foreign DNA into cells. This process has been shown to be useful for genetic transformation of many organisms. The first step in taking advantage of this process is to optimize the factors which affect transformation efficiency.
Several factors that have a significant affect on transformation efficiency were examined in an effort to optimize the biolistic process for gene transfer in roses. The factors examined were type of tissue (leaf segments, petioles, callus, etc), bombardment distance, the number of bombardments, DNA construct and microcarrier velocity.
The reporter gene, GUS, was used for determining transformation efficiency in this study. GUS was carried on several plasmid constructs which also contained antibiotic resistance (kanamycin or streptomycin. Efficiency of gene transfer was determined by calculating the number of transiently expressing GUS cells for each combination of factors.
Results of this study will be discussed and summarized.
Four heat-tolerant (`Celebration Cherry Red', `Celebration Rose', `Lasting Impressions Shadow', and `Paradise Moorea') and three non-heat-tolerant (`Lasting Impressions Twilight', `Danziger Blues', and `Pure Beauty Prepona') cultivars were identified using a Weighted Base Selection Index. These cultivars were used as parents in a full diallel crossing block with reciprocals and selfs. Progeny from five parents (25 crosses) were evaluated for heat tolerance. Four floral (fl ower number, flower diameter, flower bud number, and floral dry weight) and five vegetative characteristics (visual rating, leaf size rating, vegetative dry weight, branch number, and node number) were evaluated with emphasis placed on continued flowering under long-term heat stress. In addition, progeny from all seven parents (49 crosses) were evaluated for inheritance of adaxial leaf color, abaxial leaf color, vein color, and flower color. Significant differences were found in each data category (P < 0.001) with the exception of node number, which was not significant. Flower number varied from 0 to 2, flower diameter varied from 0 to 41 mm, floral dry weight varied from 14 to 105 mg, bud number varied from 0 to 12, branch number varied from 5 to 15, and vegetative dry weight varied from 220 to 607 mg. General and specific combining abilities of the parents were evaluated as was heritability. It was found that the four heat-tolerant cultivars had higher general combining abilities. Heat tolerance has low heritability and is controlled by many genes.
Fifty-three commercial New Guinea Impatiens cultivars (Impatiens hawkeri Bull.) from six different breeding series were tested for level of heat tolerance. Five floral (flower number, flower length, flower width, floral dry weight, and flower bud number) and five vegetative characteristics (leaf dry weight, stem dry weight, total dry weight, number of nodes, and number of branches) were evaluated with emphasis placed on continued flowering under long term heat stress. Significant differences among cultivars were found in each data category (P ≤ .0001). Flower number varied from 0 to 6, flower length varied from 10 to 51 mm, flower width varied from 10 to 47 mm, floral dry weight varied from 0 to 0.5 g, and flower bud number varied from 0 to 14. Four heat tolerant (Celebration Cherry Red, Celebration Rose, Lasting Impressions Shadow, and Paradise Moorea) and three nonheattolerant (Lasting Impressions Twilight, Danziger Blues, and Pure Beauty Prepona) cultivars were identified using a Weighted Base Selection Index. These cultivars were used as parents in a full diallel crossing block with reciprocals and selfs. One hundred seedlings from each of 49 crosses were evaluated for heat tolerance. General and specific combining abilities of the parents were evaluated as was heritability. It was found that the four heat tolerant cultivars had higher general combining abilities. Heat tolerance has low heritability and is controlled by many genes. Superior genotypes were identified (selection intensity of 0.05) and retained for further evaluation and breeding efforts.
Purple loosestrife populations have developed into a highly aggressive and invasive weed in several Northern states (MN, NY, NJ etc.). How these populations arose is a key question in developing control strategies. Therefore, we initiated a study to elucidate the origin and genetic structure of invasive populations using isozyme analysis. The germplasm examined included invasive populations found in MN, NY, NJ, WI and MD, populations of Lythrum alatum, populations of L. virgatum and 22 cultivars of L. salicaria, the suspected progenitor of the invasive populations.
Unique isozyme patterns for most cultivars was observed and these were consistently indicative of that clone over repeated sampling. Clones of putative “salicaria” origin could not be distinguish from those of putative “virgatum” origin.Significant isozyme polymorphism was observed within and among the 26 Lythrum populations. Indicating that isozymes can be an important tool in studies on the structure and evolution of invasive loosestrife populations.
To date, our isozyme analysis indicates that L. salicaria and L. virgatum are not distinct species. It appears that the decision by the MN Department of Agriculture to add all horticultural lines to the noxious weeds list regardless of origin was a prudent decision.
The study was designed to provide information on the inheritance of certain characters important to drought tolerance in New Guinea impatiens. Seven genotypes, three were drought tolerant and four drought susceptible, were crossed in a full diallel with selfs. Drought tolerance of parents was estimated using stomatal conductance. At least 55 seedlings per cross were grown in the greenhouse for 2 months and evaluated for drought tolerance. Leaf fresh weight (LFW) leaf area (LA), leaf length (LL), leaf width (LW), and leaf thickness (LT) were measured using 10 leaves from each plant (parents plus progeny). From these measurements, we calculated LFW/LA and LL/LW. Stomatal conductance was measured on parents plus progeny of three crosses (drought tolerant × drought tolerant, drought tolerant × drought susceptible and drought susceptible × drought susceptible). Heritabilities and nonadditive and additive genetic variance for each trait were determined. All characters were significantly different between families. LFW/LA and LT was positively correlated with drought tolerance. The heritabilities for these traits were high, indicating that these characters can be used for selecting for drought tolerance in New Guinea impatiens and that rapid progress can be and was made in improving drought tolerance in New Guinea impatiens.