Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: M. Peggy Compton x
Clear All Modify Search

Cucumbers (Cucumis sativus L. `Vetomil') were grown in rockwool or perlite to evaluate these media for efficient hydroponic cucumber production under Florida greenhouse conditions. Plants were grown using a double-stem training method, and the frequency of irrigations was controlled by a weighing Iysimeter for each treatment. In experiment 1, plants were grown in rockwool with 29% or 17% leachate and in perlite with 17% leachate. Nutrient concentrations in the solution were N, P, and K at 175, 50, and 180 mg·liter–1, respectively. In Expt. 2, nutrient concentrations were increased to N, P, and K at 225, 60, and 225 mg·liter–1, respectively. Other nutrient concentrations and leachate percentages remained as in Expt. 1. When nutrients were limiting, as in Expt. 1, yields (number and total weight of fruit) were higher from plants grown in rockwool at 29% leachate than from plants grown in rockwool or perlite at 17% leachate. However, when nutrient concentrations were increased in Expt. 2, higher total fruit weight was harvested from plants grown at the lower percent leachate and there was no difference in fruit number. In both experiments, cucumbers did not differ in yield when grown at the same percent leachate in either rockwool or perlite.

Free access

Cucumbers (Cucumis sativus L. `Vetomil') were grown in rockwool or perlite to evaluate these media for efficient hydroponic cucumber production under Florida greenhouse conditions. Plants were grown using a double-stem training method, and the frequency of irrigations was controlled by a weighing lysimeter for each treatment. In Expt. 1, plants were grown in rockwool with 29% or 17% leaching fraction (LF) and in perlite with a 17% LF. Nitrogen, P, and K concentrations in the complete nutrient solution were 175, 50, and 180 mg·L−1, respectively. In Expt. 2, N, P, and K concentrations were increased to 225, 60, and 225 mg·L−1, respectively. Other nutrient concentrations and LFs remained as in Expt. 1. In Expt. 1, yields (fruit count and total fruit mass) were higher from plants grown in rockwool at 29% LF than from plants grown in rockwool or perlite at 17% LF. However, in Expt. 2, when nutrient concentrations were higher, total fruit mass was greater from plants grown at the lower LF, although there was no difference in fruit number. In both experiments, cucumber yield did not differ when grown at the same LF in either rockwool or perlite. Electrical conductivity (EC) and pH of the nutrient solution from the growing bags were not affected when LFs were decreased. In Expt. 1, the pH and EC ranged from 6.1 to 7.0 and from 0.9 to 1.6 mS·cm−1, respectively, across all treatments. In Expt. 2, pH and EC ranged from 5.3 to 6.9 and from 0.6 to 2.5 mS·cm−1, respectively, across all treatments.

Full access

Four experiments were conducted from 1992 to 1994 to determine the concentrations of N and P required to maximize yields of rockwool-grown cucumbers (Cucumis sativus `Vetomil') trained with a double-stem method. Concentrations of N and P in rockwool slabs were monitored throughout growth of greenhouse-grown cucumbers. The onset and duration of nutrient depletion in the slabs were related to cucumber yield. In Expt. 1, treatment-1 plants received a two-step solution containing N at 90 and 175 mg·L−1 during successive growth phases, while treatment-2 and -3 plants were grown with N at a constant 175 or 225 mg·L−1. Phosphorus was provided at 50 mg·L−1 in all treatments. Treatment 1 was excluded from Expt. 2. In Expts. 3 and 4, plants were grown with N at 225 or 275 mg·L−1 and P at 75 mg·L−1. Onset of N and P depletion (to <10 mg·L−1) in the growing slabs occurred during the early fruiting stage of cucumber, 1 to 8 days before first harvest. The duration of N and P depletion decreased, and cucumber yields increased with increasing N and P concentrations. When plants were grown with N and P at 275 and 75 mg·L1, respectively, N was depleted in the growing slabs during only one experiment and then for only 4 days, and slab P concentration remained >10 mg·L1. Therefore, under Florida conditions, when growing cucumbers in rockwool using a double-stem training technique, N and P should be provided at 275 and 75 mg·L−1, respectively, to minimize depletion of these nutrients from the growing medium.

Full access

Experiments were conducted to determine the effect of varying solution N concentrations on fruit yield and NO3-N concentration in leachate from rockwool-grown `Midal' peppers (Capsicum annuum L.) in Florida. Treatment 1 plants received a series of nutrient solutions containing N at 60, 90, and 120 mg·liter–1 (60–90–120 mg·liter–1) during their growth cycle. Plants in treatments 2 and 3 were grown with N at 120 or 175 mg·liter–1, respectively, throughout their entire growth cycle. Two trials were conducted; trial 1 from 17 Nov. 1991 to 1 July 1992, and trial 2 from 31 July 1992 to 23 Feb. 1993. In both trials, total marketable fruit weight was significantly (P ≤ 0.05) higher (16% to 67%) for plants grown with N at 175 than with 60–90–120 mg·liter–1. In trial 2, plants receiving N at 175 mg·liter–1 produced significantly more fruit (8%) and 14% higher total fruit weight than plants receiving N at 120 mg·liter–1. The trend toward higher yield with N at 175 rather than 120 mg·liter–1 also occurred during trial 1, but differences were not significant. Nitrogen concentration did not significantly affect the percentage of total fruit having blossom-end rot in either trial (41% in trial 1; 13% in trial 2). Nitrogen at 175 mg·liter–1 resulted in 10% to 40% increases in total nutrient solution use and 2.5- to 3.5-fold increases in leachate NO3-N concentration compared to N at 120 mg·liter–1.

Free access