Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: M. Ozores-Hampton x
  • Refine by Access: All x
Clear All Modify Search
Free access

M. Ozores-Hampton, B. Schaffer, and H. H. Bryan

The effects of amending soil with municipal soil waste (MSW) on growth, yield and heavy metal content of tomato were tested with different irrigation rates. The following MSW materials were incorporated into oolitic limestone soil: 1) Agrisoil compost (composted trash), 2) Daorganite compost (sewage sludge), 3) Eweson (composted trash and sewage sludge), and 4) no MSW (control). Two rates (high and low) were applied to the soil for each compost. There were no significant effects of irrigation rate on any of the variables tested for tomato in 1991 or 1992. Therefore, the lowest irrigation rate appeared to be adequate for optimum tomato production. Plants grown in Daorganite at the lowest rate of 8 t/ha had greater growth and yield than plants grown in the other MSW materials or the control. Agrisoil and Eweson composts did not increase growth or yield, which may have been due to suboptimal application rates of these materials. There were no differences in the concentration of heavy metals in fruit or leaves among MSW materials or rates. MSW rate generally had no effect on root heavy metal concentration, except for Eweson where the high rate resulted in a higher root zinc concentration than the low rate. There were signifant differences in root concentrations of lead, zinc, and copper among MSW materials. Leaf concentrations of all heavy metals tested were within normal ranges for tomato.

Free access

M. Ozores-Hampton, H.H. Bryan, B. Schaffer, and E.A. Hanlon

The effects of municipal solid waste (MSW) materials on growth, yield, and mineral element concentrations in tomato (Lycopersicon esculentum Mill.) (1991 and 1992) and squash (Cucurbita maxima Duch. Ex Lam.) (1992 and 1993) were evaluated. Agrisoil compost (composted trash), Eweson compost (co-composted trash and sewage sludge), or Daorganite sludge (chemically and heat-treated sewage sludge) were incorporated into calcareous limestone soil of southern Florida. The control had no MSW material added to the soil. The effect of MSW on crop growth, yield, and mineral element concentrations varied considerably between years for tomato and squash. In 1991, tomato plants grown in soil amended with Eweson or Daorganite had a greater canopy volume than plants in the control treatment. Tomato plants grown in Daorganite had greater total fruit weight (1991) than plants in Agrisoil and more marketable fruit (1992) than control plants. In both years, tomato plants in Agrisoil had higher root Zn concentrations than plants in the other treatments. In 1992, tomato plants in Eweson had lower root Mn concentrations than plants in the other treatments, whereas Mg concentrations in the roots were higher in the Daorganite treatment than in Eweson. Tomato plants in Agrisoil had higher Pb concentrations in the roots than plants in all other treatments. In 1991, leaves of tomato plants in Agrisoil had lower Ca concentrations than leaves of plants in the control treatment. In 1992, leaf Zn concentrations were greater for tomato and squash in Agrisoil than in the control or Daorganite. In 1992, canopy volume and yield of squash were greater for plants in Daorganite than for plants in the control and other MSW treatments. Although canopy volume and total squash fruit weight did not differ among treatments in 1993, plant height was greater for squash plants in the MSW treatments than for those in the control. In 1993, leaf Mg concentrations were greater for squash grown in Daorganite than for plants in the control or Agrisoil. In 1993, fruit Cd concentration was higher for plants with Eweson than for plants in the control or Agrisoil. However, the fruit Cd concentration in squash grown in Eweson compost (1.0 mg/kg dry weight) was far below a hazardous level for human consumption. Our results indicate that amending calcareous soils with MSW materials can increase growth and yield of tomato and squash with negligible increases in heavy metal concentrations in fruit.

Free access

Robert E. Rouse, Monica Ozores-Hampton, Fritz M. Roka, and Pamela Roberts

Citrus trees affected by huanglongbing (HLB) become diminished, weak, and develop dieback resulting in reduced production. Decline in fruit yield ultimately prevents economically acceptable commercial citrus production. The objectives of this study were to evaluate the effects of severe pruning in combination with an enhanced foliar nutritional treatment on growth, yield, and juice quality of HLB-affected orange trees. The bacterial titer within the trees was monitored before and after treatments, and a cost–benefit analysis provided an economic evaluation of the treatments. Fifteen-year-old ‘Valencia’ orange (Citrus sinensis Macf.) trees on Swingle citrumelo rootstocks [C. paradisi × Poncirus trifoliata (L.) Raf.] with 100% incidence of HLB, confirmed by real-time polymerase chain reaction (PCR), were severely pruned back to the main scaffold branches. Between 2010 and 2015, foliar nutrients were sprayed on both pruned and nonpruned trees to target new flush growth. Three enhanced nutritional foliar treatments were evaluated and compared with a control foliar nutritional treatment that was considered to be a standard practice before endemic HLB. The enhanced nutritional treatments included a mixture of micro- and macronutrients commonly known as the “Boyd cocktail,” a micronutrient package labeled Fortress © (Florida Phosphorus LLC, Key Largo, FL) sprayed with potassium nitrate (KNO3), and the Fortress © micronutrient package sprayed with urea. The experiment was a split-plot with seven replications, with pruning as the main plots, and a foliar nutritional treatment as subplots. Tree pruning was performed in Feb. 2010 before the spring flush. Pruned trees grew longer shoots than the controls the year after pruning. Canopy volume and leaf area were greater with nonpruned trees, but the chlorophyll content per cm2 leaf area was higher in the pruned trees compared with nonpruned trees in 3 years of the 5-year experiment. Pruned and nonpruned trees bloomed and set fruit the first year of the experiment in the spring of 2010–11. The fruit crop for the 2010–11 and 2014–15 seasons, and the overall total fruit crop for the 2010–15 season on pruned trees were significantly lower than those on nonpruned trees. However, no significant yield differences were found between pruned and nonpruned trees in the 2011–12, 2012–13, and 2013–14 growing seasons. Fruit yields from pruned trees never surpassed the yields from nonpruned trees, and this was possibly due to the severe-pruning treatment. Thus, severe pruning, as used in this trial, was not cost effective through the first 5 years after pruning. The rapid regrowth response of the pruned trees, however, may indicate that a reduced pruning approach could be effective at rejuvenating the HLB-affected trees, and an alternative to tree removal and replanting. Enhanced foliar nutrition treatments provided some yield benefits, especially in the early years of the trial. However, the enhanced foliar nutrition treatments did not prove to be cost effective.