Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: M. Ngouajio x
Clear All Modify Search

The effect of summer cover crop and management system on subsequent fall romaine lettuce (Lactuca sativa L.) and spring muskmelon (Cucumis melo L.) growth and yield was evaluated in the Coachella Valley of California from 1999 to 2003. Cover crop treatments included: 1) cowpea [Vigna unguiculata (L.) Walp.] incorporated into the soil in the fall (CPI), 2) cowpea used as mulch in the fall (CPM), 3) sudangrass [Sorghum bicolor (L) Moench] incorporated into the soil in the fall (SGI), and 4) a bare ground control (BG). Management system treatments included: 1) conventional system (CON), 2) integrated crop management (ICM), and 3) organic system (ORG). Cowpea cover crop, either incorporated or used as surface mulch, increased lettuce growth and yield by increasing biomass allocation to lettuce leaf and leaf area growth. Cowpea mulch decreased muskmelon leaf and biomass growth and reduced muskmelon yield. Sudangrass produced more biomass than cowpea and reduced lettuce growth and yield. However, in the following spring, the SGI treatment had the highest muskmelon yield. Lettuce growth was significantly affected by management system, while muskmelon growth at the early stage was unaffected. The organic system reduced both lettuce and muskmelon yield compared with CON and ICM management systems.

Free access

Cowpea [Vigna unguiculata (L.) Walp.] is an important component of most traditional cropping systems in the semiarid tropics. It provides both leaf vegetable and/or grain. Dual-purpose production of cowpea is most common in subsistence farming systems. Little is, however, known about the effects of cowpea leaf harvesting on tissue nitrogen composition and productivity of most cowpea-based cropping systems. A four-season study was carried out at the National Dry Land Research Center, Katumani, Kenya, to establish the effects of cowpea leaf harvesting initiation time and frequency on 1) tissue nitrogen content of cowpea and maize in a dual-purpose cowpea–maize intercropping systems; and 2) cowpea and maize yield and the overall productivity of a cowpea–maize intercrop measured by land equivalent ratio (LER). Cowpea leaf harvesting was initiated at 2, 3, or 4 weeks after emergence (WAE) and continued at 7- or 14-day intervals until onset of flowering. Cowpea tissue nitrogen content was highest in the control treatment and lowest in cowpea subjected to leaf harvesting from 2 WAE or at 7-day intervals, whereas maize tissue nitrogen content showed the reverse trend. Harvesting cowpea leaves from 3 WAE or at 7-day intervals gave the highest leaf vegetable yield, whereas grain yields were highest when no leaf harvesting was done. Maize yields were significantly improved by harvesting of leaves of the companion cowpea. Harvesting cowpea leaves for use as leaf vegetable increased productivity per unit area of land as measured by LER with the highest productivity achieved when leaf harvesting was initiated at 4 WAE or done at a 14-day interval.

Free access

Michigan is the national leader for pickling cucumber production. However, over the last few years growers have witnessed a considerable decline in marketable yield, mainly attributed to fruit rot caused by Phytophthora capsici. Phytophtora develops rapidly under high relative humidity, a situation commonly found with narrow rows. Growers are interested in using wider rows but would like to know if there are any associated yield reductions. This study was conducted in 2003 to measure the effects of cucumber plant populations on canopy dynamics and fruit yield. Cucumbers were grown with between-row spacing of 30.5, 45.7, 61.0, and 76.2 cm, and in-row spacing of 10.2, 12.7, and 15.2 cm. A split-plot design with four replications was used. Row spacing was the main plot factor, and in-row spacing the subplot factor. Soil covered by plant canopy was monitored throughout the growing season using digital image analysis techniques. At harvest, the number of fruits per plant and marketable yield for the different grades were measured. Cucumber canopy remained open during the major part of the growing season when wide rows (61.0 and 76.2 cm) were used. The number of fruits per plant increased from an average of 1.5 fruits at 30.5 cm to 2.0 fruits per plant at 61.0 cm. Further widening of row spacing to 76.2 cm slightly reduced the number of fruits per plant. Therefore, the optimum row spacing would be 61.0 cm if the number of fruits per plant was the only parameter being measured. Cucumber marketable yield was similar with 30.5, 45.7, and 61.0 cm spacing between the rows. With 76.2-cm rows, yield reduced slightly. These results suggest that cucumber plant density can be reduced substantial with limited yield penalty.

Free access

Unfavorable environmental conditions, pests, and viral diseases are among the major factors that contribute to poor growth and quality of tomato (Solanum lycopersicum) seedlings in tropical areas. Improving crop microclimate and excluding insects that transmit viruses may improve transplant quality and yield in production fields. This study was carried out in two seasons at the Horticulture Research and Teaching Field of Egerton University in Njoro, Kenya, to investigate the effects of agricultural nets herein called eco-friendly nets (EFNs) on germination and performance of tomato seedlings. Tomato seeds were either raised in the open or under a permanent fine mesh net (0.4-mm pore diameter). Eco-friendly net covers modified the microclimate resulting in significantly higher day temperatures and relative humidity, compared with the open treatment. Nets increased temperature and relative humidity by 14.8% and 10.4%, respectively. Starting seeds under a net advanced seedling emergence by 2 days and resulted in higher emergence percentage, thicker stem diameter, more leaves, and faster growth leading to early maturity of seedlings and readiness for transplanting. Netting improved root development by increasing root quantity and length. Stomatal conductance (g S) and estimates of chlorophyll content were higher in seedlings under net covering compared with those in the noncovered control treatment. Insect pests and diseases were also reduced under net covering. The use of the net in the production of tomato transplants presented a 36.5% reduction in the cost of seeds, through improved emergence and reduced pest damage. All other factors held constant, healthy and quality transplants obtained under a net covering also translate into better field performance; hence, increasing economic returns for commercial transplants growers, as well as for tomato farmers. Results of this study suggest that EFNs can be customized not only for their effective improvement on growth and quality of tomato transplants but also for their pest and disease management in the nursery alone or as a component of integrated pest and disease management.

Free access

As organic agriculture continues to grow, pressure from students and the public to develop novel curricula to address specific needs of this sector of agriculture also will increase. More students from the cities and with limited background in production agriculture are enrolling in agricultural programs with special interest in organic production. This new student population is demanding new curricula based on a better understanding of agroecology principles and more experiential training. Several universities throughout the nation have engaged in a profound curriculum transformation to satisfy the emerging need of students in organic production. This workshop was organized to bring together experts that are working on different organic and sustainable agriculture curricula throughout the country to share their experiences and lessons learned. Most of these curricula include a traditional classroom teaching component, a major experiential component, a student farm for hands-on experience and internships, and in some cases a marketing—typically a community supported agriculture (CSA)—component. Others programs are more extension oriented, providing applied training to growers outside of the university teaching curriculum.

Full access