Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: M. Lucrecia Alvarez x
Clear All Modify Search
Free access

Ryo Matsuda, Chieri Kubota, M. Lucrecia Alvarez and Guy A. Cardineau

Changes in the amounts of F1-V, an antigen fusion protein and a candidate subunit vaccine against plague, and total soluble protein (TSP) in green fruit of transgenic tomato plants were investigated to identify the optimum harvest timing to maximize the F1-V yields. Two T 2 progenies of the transgenic plant, ‘22.11.21’ and ‘22.11.5’, were grown. The F1-V concentration rapidly decreased at the beginning of the green stage and decreased to less than 5% of the initial concentration at the late green stage in ‘22.11.21’. The F1-V concentration also decreased as fruit size increased in ‘22.11.5’, but the pattern of the decrease was linear and different from that in ‘22.11.21’. The concentration of TSP also decreased with fruit growing in both plants. When calculated on a whole fruit basis, the F1-V content linearly decreased with increasing fruit size in ‘22.11.21’. In ‘22.11.5’, the F1-V content per fruit also tended to decrease from the middle to late green stage. Based on these observations, collecting small green fruits without pruning was proposed as a harvest practice that may maximize the F1-V yields. Thus, the optimum protocols for harvesting and pruning for plant-made pharmaceutical production may be substantially different from those currently used in commercial hydroponic greenhouses for fresh market tomato.

Free access

Ryo Matsuda, Chieri Kubota, M. Lucrecia Alvarez and Guy A. Cardineau

Using greenhouse tomato (Solanum lycopersicum) as a model system to produce pharmaceutical proteins, electrical conductivity (EC) of hydroponic nutrient solution was examined as a possible factor that affects the protein concentration in fruit. Transgenic tomato plants, expressing F1-V protein, a plant-made candidate subunit vaccine against plague (Yersinia pestis), were grown hydroponically at high (5.4 dS·m−1) or conventional EC [2.7 dS·m−1 (control)] with a high-wire system in a temperature-controlled greenhouse. There was no significant difference in plant growth and development including final shoot dry weight (DW), leaf area, stem elongation rate, or leaf development rate between high EC and control. Net photosynthetic rate, transpiration rate, and stomatal conductance (g S) of leaves were also not significantly different between EC treatments. For both EC treatments, immature green fruit accumulated DW at a similar rate, but dynamics observed in fruit total soluble protein (TSP) and F1-V during the fruit growth were different between the two ECs. Fruit TSP concentration per unit DW decreased while TSP content per whole fruit increased as fruit grew, regardless of EC. However, TSPs were significantly lower in high EC than in control. Fruit F1-V concentration per unit DW and F1-V content per whole fruit were also lower in high EC than in control. Our results found that increasing EC of nutrient solution decreased TSP including the vaccine protein in fruit, suggesting that adjusting nutrient solution EC at an appropriate level is necessary to avoid salinity stress in this transgenic tomato.