Search Results
Abstract
Gibberellic acid (GA3) was applied to globe artichoke plants prior to bud enlargement in the fall, and to similar plants during bud development in the spring. Single applications of 25 or 50 ppm were adequate to induce accelerated flower bud development. The rate of bud development was more pronounced when GA3 was applied in the fall. Although total yields from treated and non-treated plants were not significantly different, earliness was increased.
The utility of alumina-buffered phosphorus (Al-P) fertilizers for supplying phosphorus (P) to bell pepper (Capsicum annuum L.) in soils with low-P availability was evaluated. Plants were grown at low-P fertility (about 100 kg·ha–1, low-P control; LPC), with conventional P fertilization (205-300 kg·ha–1 annually, fertilizer control; FC), or with one of two Al-P sources (Martenswerke or Alcoa) in 2001–03. The two Al-P fertilizers were applied in 2001; no additional material was applied in 2002-03. Plants grown with Martenswerke Al-P had similar shoot dry weight, root dry weight, root length, leaf P concentration, and fruit yield compared with plants grown with conventional P fertilizer in both 2002 and 2003 seasons. Bell pepper grown with Alcoa Al-P had similar shoot dry weight, root dry weight, root length, leaf P concentration, and fruit yield compared with plants grown without P fertilizer in both seasons. Alcoa Al-P continuously released bioavailable P for 2 years between 2001 and 2002, while Martenswerke Al-P continuously released bioavailable P at least 3 years between 2001 and 2003. These results indicate that some formulations of Al-P can serve as long-term P sources for field vegetable production.
To be useful for indicating plant water needs, any measure of plant stress should be closely related to some of the known short- and medium-term plant stress responses, such as stomatal closure and reduced rates of expansive growth. Midday stem water potential has proven to be a useful index of stress in a number of fruit tree species. Day-to-day fluctuations in stem water potential under well-irrigated conditions are well correlated with midday vapor-pressure deficit, and, hence, a nonstressed baseline can be predicted. Measuring stem water potential helped explain the results of a 3-year deficit irrigation study in mature prunes, which showed that deficit irrigation could have either positive or negative impacts on tree productivity, depending on soil conditions. Mild to moderate water stress was economically beneficial. In almond, stem water potential was closely related to overall tree growth as measured by increases in trunk cross-sectional area. In cherry, stem water potential was correlated with leaf stomatal conductance and rates of shoot growth, with shoot growth essentially stopping once stem water potential dropped to between −1.5 to −1.7 MPa. In pear, fruit size and other fruit quality attributes (soluble solids, color) were all closely associated with stem water potential. In many of these field studies, systematic tree-to-tree differences in water status were large enough to obscure irrigation treatment effects. Hence, in the absence of a plant-based measure of water stress, it may be difficult to determine whether the lack of an irrigation treatment effect indicates the lack of a physiological response to plant water status, or rather is due to treatment ineffectiveness in influencing plant water status. These data indicate that stem water potential can be used to quantify stress reliably and guide irrigation decisions on a site-specific basis.