Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: M. Edelstein x
Clear All Modify Search

The involvement of the seed coat in low temperature germination of melon seeds was examined in two accessions differing in their ability to germinate at 14°C: `Noy Yizre'el' (NY) (a cold-sensitive cultivar) and `Persia 202' (P-202) (a cold-tolerant breeding line). Submerging the whole seed, or covering the hilum with lanolin, strongly depressed germination of NY, but not of P-202. Accessions differed in germination response to decreasing O2 concentration, with NY showing higher sensitivity to hypoxia. Intercellular spaces in the outer layer of the seed-coat were evident in the more tolerant P-202, while in the sensitive NY this layer is completely sealed. Sensitivity to hypoxia was greater at 15°C than at 25°C and was greater in NY than in P-202. It is proposed that the seed-coat imposed dormancy at low temperature in NY is the combined result of more restricted oxygen diffusion through the seed coat and a greater embryo sensitivity to hypoxia, rather than imbibition impairment or a physical constraint.

Free access

Melon plants grafted on Cucurbita rootstock may suffer from nutritional deficiencies due to reduced absorption and translocation of minerals to the foliage. Melon (Cucumis melo L.) cv. 6023 was grafted onto two interspecific Cucurbita rootstocks (Cucurbita maxima × Cucurbita moschata) ‘TZ-148’ and ‘Gad’. Nongrafted melons were used as controls. Two fertilization field experiments were conducted in walk-in tunnels in the northern Arava valley of southern Israel. Two fertigation regimes were used: 1) standard and 2) enriched for magnesium (Mg; 150 mg·L−1), manganese (Mn; 7.5 mg·L−1), and zinc (Zn; 0.75 mg·L−1) to increase the concentrations of the lacking elements. The enriched fertigation significantly increased Mn, Zn, and Mg contents in the leaf tissue. Concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), chloride (Cl), iron (Fe), and boron (B) were unaffected by the enriched fertilizer. There were no deficiency symptoms in grafted plants supplied with the enriched fertilizer.

Free access

The effect of Cucurbita and melon rootstocks on the horticultural and pathological performance of grafted Fusarium-susceptible melons was studied in four field experiments conducted in Fusarium-infested and Fusarium-free soils. The melon/melon combinations performed better than the melon/Cucurbita combinations regarding yield and disease control. In the 1999 experiment conducted in infested soil, Fusarium wilt symptoms were observed only in the nongrafted susceptible melons whereas all grafted combinations were symptom-free. In the 2000 experiment, nongrafted susceptible melons were totally wilted, whereas disease incidence in the melon/melon combinations and in one of the melon/Cucurbita combinations was low. The response of grafted plants to Fusarium wilt was also affected by the susceptibility of the scion. Among nongrafted melon cv. Ananas Ein Dor and those grafted onto Brava rootstock, 82% and 20%, were diseased, respectively, compared with only 36% and 0%, of the nongrafted and grafted `Ofir' melons, respectively. Negligible quantities of fruit were harvested from the nongrafted plants grown in infested soil, whereas high and moderate yields were obtained from melons grafted onto melon and Cucurbita rootstocks, respectively. The yield of the nongrafted melons in Fusarium-free soils were similar to those of all the grafted plant combinations. Susceptible melon scions grafted onto resistant melon rootstocks were less colonized by F. oxysporum f. sp. melonis than the same melons grafted onto the Cucurbita rootstocks.

Free access