Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: M. E. Daxenbichler x
Abstract
Intact roots of 109 radish (Raphanus sativus L.) cultivars were analyzed for glucosinolates (GS’s) and found to contain primarily 4-methylthio-3-butenyl-GS with small amounts of 4-methylsulfinylbutyl-, 4-methylsulfinyl-3-butenyl-, and 3-indolylmethyl-GS’s. Cultivars included oil radishes (ssp. oleifera) and food radishes (ssp. radicola) available in European, European-American, Japanese, and Korean markets. Regarding total GS’s, 80% or more of the red European-American radishes had 100-199 pmole/100 g, the Korean 100-299, and the Japanese 200-399. No correlation was found between root size and 4-methylthio-3-butenyl-, 3-indolylmethyl-, or total GS’s. Japanese radish peelings contained significantly greater concentrations of these 3 constituents than did the peeled root.
Abstract
Seeds of cabbage (Brassica oleracea (Capitata group) contain 10-fold more glucosinolates than do cabbage heads (dry basis). Seeds give rise to relatively greater amounts of goitrin and lesser amounts of SCN ion than do heads. In spite of these differences, seeds of 50 cabbage cultivars are shown to have fair predictive value for glucosinolate patterns in the corresponding heads.
Abstract
Correlation coefficients based on relative concentrations of 13 glucosinolates in the edible parts of 30 cultivars were determined. Brussels sprouts (Brassica oleracea L. gemmifera group), cauliflower (B. oleracea L. botrytis group), and either marrow-stem or smooth-leafed kale (B. oleracea L. acephala group) had similar glucosinolate patterns based on significant correlations (P < 0.01). The glucosinolates of ‘Morris Heading’ collards [(B. oleracea L. acephala group (var. sabellica)] were highly correlated with those of curly kale [B. oleracea L. acephala group (var. selensia)]. Mustard greens [B. juncea (L.) Czern. & Coss. var. rugosa Bailey] and the corresponding seeds were the most highly correlated of the 17 cultivars for which the edible parts and seeds were compared. Seed analyses indicated relationships among the cultivars somewhat similar to those seen for the edible portions.
Abstract
Fourteen cultivars of turnip [Brassica rapa, rapifera group, also B. campestris L. ssp. rapifera (Metzg.) Sinsk.] recommended for human consumption of either tops or tops and roots and five cultivars recommended for consumption of roots were selected to compare glucosinolate (GS) levels in tops and roots. Also, two cultivars used for animal feed were included. The study revealed significantly lower levels of 1-methylpropyl-GS and 2-hydroxy-3-butenyl-GS in tops and roots of cultivars grown for greens, compared to those used for animal feed. Contents of 1-methylpropyl-, 3-butenyl-, and 4-pentenyl-GSs were higher in turnip tops than in roots, while 2-hydroxy-3-butenyl-, 4-(methylthio)butyl-, 4-(methylsulfinyl)butyl-, 2-hydroxy-4-pentenyl-, 5-(methylthio)pentyl-, 2-phenylethyl-, 3-indolylmethyl-GSs and total GS were all higher in the roots. GS patterns for seeds tended to correlate with those of the tops.
Abstract
Seventy-nine cultivars and lines of cabbage Brassica oleracea L. (Capitata group) were analyzed for 11 glucosinolates to provide a data base of the levels of these potential toxicants. Aglucon hydrolytic products of glucosinolates from fresh cabbage (mean of 79 cultivars) include 24 ppm allyl isothiocyanate, 45 ppm 3-methylsulfinylpropyl isothiocyanate, 18 ppm SCN ion, 17 ppm 4-methylsulfinylbutyl isothiocyanate, and 4 ppm goitrin. Composition of the cultivars are summarized by type (red, white, savoy) and by end use (market, storage, kraut). Glucosinolates with a 3-carbon aglucon (excluding the sinolate carbon) predominate over 4-carbon glucosinolates in white and savoy types. Four-carbon glucosinolates (including goitrin precursor) predominate in red cabbages. Savoy cabbages are high in glucosinolates yielding SCN ion. Distinctions between market, storage, and kraut cultivars are less well defined. No differences could be seen between open pollinated and hybrid cultivars. Year-to-year variation for 12 cultivars is discussed.