Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: M. Courtney x
Clear All Modify Search

Blueberries are an important fruit crop in the Ericaceae represented by multiple Vaccinium species and ecotypes. In addition to their economic value, blueberry fruit is known for an abundance of specialized metabolites with known human health benefits. Phenolic compounds, which include flavonoids and anthocyanins, are an important class of compounds found in blueberry that are known to contribute to fruit flavor and quality and for having health-promoting properties. Previous surveys of phenolic compounds in blueberry have demonstrated considerable variability in concentration of these metabolites, which is associated with differences in environmental factors and cultivars surveyed. This study expands this knowledge by surveying total phenolic, flavonoid, and anthocyanin content in ripe fruits of 71 blueberry cultivars from one growing season in Michigan. Included in this diversity panel are three ecotypes of blueberry (northern highbush, southern highbush, and half highbush). Rubel, Legacy, and Friendship were among the seven cultivars with the highest content of each compound. Total phenolic content showed a 5.03-fold difference among the lowest and highest cultivars, and total flavonoid content and total anthocyanin content demonstrated a 2.66-fold and 6.37-fold difference between the lowest and highest content across cultivars, respectively. There was no significant impact of ecotype on phytochemical composition of ripe fruits. This study also represents the first large-scale analysis of total phenolic content using the Fast Blue BB (FBBB) reagent. Data from this study have the potential to aid in future breeding efforts to enhance the human health benefits of this economically important fruit crop.

Open Access

Iron and zinc are micronutrients essential to the human diet but are in deficient supply to many in the tropics. Fortifying the micronutrient content of staple crops like sweetpotato [Ipomoea batatas (L.) Lam.] would go far in alleviating this intractable problem. This article presents estimates of broad-sense heritability for iron and zinc content in sweetpotato roots using a technique based on full-sibling families. Among individual genotypes, iron and zinc concentration varied by a fourfold and sixfold difference, respectively, whereas dry matter concentration showed a threefold variation. Family mean estimates varied significantly for the three traits. High broad-sense heritability for iron (H = 0.74), zinc (H = 0.82), and dry matter concentration (H = 0.93) were obtained among full-sibling families. These results suggest that traditional breeding strategies like mass selection could improve the micronutritional value of sweetpotato and that true sweetpotato seed, which has no international phytosanitary restrictions on transfer, can be used to quickly estimate heritability.

Free access

We developed an Agrobacterium-mediated leaf disk transformation method for chrysanthemum. We introduced a chimeric chalcone synthase (CHS) gene isolated from chrysanthemum into cv. Moneymaker (pink type) to produce white-flowered plants. The CHS coding sequence was in antisense or sense orientation relative to the CaMV 35S promoter. 3.6% (3/83) antisense-transformed plants and 1.5% (2/133) sense-transformed plants produced completely white flowers. Pigment analysis revealed that this was due to a block at CHS. To study stability of color change of the white Moneymaker plants. Moneymaker, a Moneymaker regenerant, an antisense white (2706),and a sense white (31435) were compared. There was no difference between Moneymaker and the regenerant. Both 2706 and 31435 were vegetatively propagated with good stability; all plants produced white or very pale pink flowers. 2706 flowered 7 days late and 31435 10-12 days late. Flower number was similar for all four lines tested.

Free access