Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: M. Barrett x
  • Refine by Access: All x
Clear All Modify Search
Free access

Thomas M. Gradziel, Mary Ann Thorpe, and Diane M. Barrett

Free access

William M. Womack, James E. Barrett, and Terril A. Nell

`Prize' and `Gloria' azaleas were budded at 29C day/24C night without growth regulators. Dormant-budded plants were held at 2, 7, 13, or 18C for 0, 0.5, 1, 2, 4, 6, 8, or 10 weeks and then forced in walk-in growth chambers (29C day/24C night). A model was developed to describe the effect of cooling temperature and duration on days to marketability (eight open flowers) and percent of buds showing color. Holding at temperatures below 7C, increases days to marketability up to 7 days. Extended cooling (beyond 6 weeks) at temperatures <7C increases percent of buds showing color. Extended holding at temperatures >7C decreases buds in color due to development of bypass shoots during cooling and increased bud abortion. Plants not receiving a cool-treatment or cooled for <2 weeks do not flower uniformly. Furthermore, the percentage of plants reaching marketability dramatically decreases for plants held longer than 6 weeks at temperatures >7C. Both cultivars show similar trends, but `Gloria' has greater variability.

Free access

William M. Womack, Terril A. Nell, and James E. Barrett

Dormant-budded `Prize' azaleas (Rhododendron sp.) were held at 2C, 7C, 13C, or 18C for 1, 2, 4, 6, 8, or 10 weeks then forced in walk-in growth chambers (29C day/24C night). Holding at 2C delayed flowering by 5-7 days over 7C and 13C. Plants held at 2C, 7C, or 13C for at least 4 weeks had approximately 50% buds showing color at marketability (8 open flowers). Plants held at 18C never exceeded 35% buds showing color at marketability. Increase in buds showing color was not apparent for plants were held at 7C, 13C, or 18C for more than 6 weeks; however, holding at 2C resulted in increasing percentages of buds showing color for holding periods longer than 6 weeks. Plants chilled at 13C and 18C showed significant increases in bud abortion after 8 or 10 weeks of cooling with most plants never reaching marketability (8 open flowers). These plants also had an increased proliferation of bypass shoots during cooling and forcing over other treatments.

Free access

Thea M Edwards, Terril A. Nell, and James E. Barrett

Increased rates of senescence and ethylene related damage of potted flowering plants have been observed in supermarket produce areas where flowers and climacteric produce are displayed together. Ethylene levels in produce areas were found to average 20 ppb. An open system of clear glass chambers with fiberglass lids was designed to simulate retail supermarket conditions. The chambers were kept in postharvest rooms where light level and temperature could be controlled. In a 3 by 3 by 3 Box-Behnken design, Sunblaze `Candy' miniature potted roses were exposed to three levels of ethylene, 20, 40, and 80 ppb, for 1, 2, and 4 days. The three light levels used were: 0, 7, and 14 μmol·m-2·s-1. Ethylene damage was based on leaf and bud drop and decreased flower longevity.

Free access

Brent M. Chapman, James E. Barrett, and Terril A. Nell

Catharanthus roseus `Cooler Peppermint' were grown under four different watering regimes [well-watered (WW), wilt plus 1 day (W+1), wilt plus 3 days (W+3), and wilt plus 1 day during the last 2 weeks only (L W+1)] and two different light levels [1100 and 750 μmol·m–2·s–1]. Stress treatments affected finished plant size and leaf area as well as stomatal conductance, water potential and time to wilt during two dry-down periods imposed at the end of an 8-week production cycle. W+3 plants were 50% smaller with 50% less leaf area compared to WW plants. During the second dry-down period, WW plants in high light wilted in 2 days vs 4 days for the W+3 plants. Similarly, WW plants in low light wilted in 3 days vs 6 days for the W+3 plants. The W+3 plants maintained significantly higher water potentials and greater stomatal conductances than the other treatments throughout both dry-down periods.

Free access

J.M. Goatley Jr., A.J. Powell Jr., M. Barrett, and W.W. Witt

Laboratory studies were conducted to determine the basis for chlorsulfuron selectivity between Kentucky bluegrass (Poa pratensis L. cv. Kenblue) and tall fescue (Festuca arundinacea Schreb. cv. Rebel). Tall fescue absorbed and translocated more foliar-applied [14C]-labeled chlorsulfuron from the treated leaf than Kentucky bluegrass. The two species absorbed similar amounts of chlorsulfuron from nutrient solution into the roots, but tall fescue translocated more of the absorbed radioactivity to the shoots. Tall fescue metabolized chlorsulfuron in the shoots slightly more slowly than Kentucky bluegrass. Allof these factors apparently contributed to the higher tolerance of Kentucky bluegrass than of tall fescue to chlorsulfuron. Chemical name used: (2-chloro-N-[[4-methoxy-6-methyl-1,3,5 -triazin-2-yl)amino]-carbonyl] benzenesulfonamide) (chlorsulfuron).

Free access

Kenneth R. Tourjee, Diane M. Barrett, Marisa V. Romero, and Thomas M. Gradziel

The variability in fresh and processed fruit flesh color of six clingstone processing peach [Prunus persica (L.) Batsch] genotypes was measured using CIELAB color variables. The genotypes were selected based on the relative fruit concentrations of β-carotene and β-cryptoxanthin. Significant (p < 0.0001) differences were found among the genotypes for the L*, a*, and b* color variables of fresh and processed fruit. Mean color change during processing, as measured by ΔELAB, was greatest for `Ross' and least for `Hesse'. A plot of the first two principal components (PCs) obtained from PC analysis of the L*, a*, and b* variables for fresh and processed fruit revealed three clusters of genotypes that match groupings based on the relative concentrations in fresh fruit of carotenoid pigments. Path analysis showed that variation in β-cryptoxanthin concentration was more precisely determined from color data than β-carotene concentration. Chemical names used: β-β-carotene (β-carotene), (3R)-β-β-caroten-3-ol (β-cryptoxanthin).

Free access

J.M. Goatley Jr., A.J. Powell Jr., W.W. Witt, and M. Barrett

Chlorsulfuron, diclofop, and sulfometuron were evaluated for potential use in selective control of tall fescue (Festuca arundinacea Schreb.) in Kentucky bluegrass (Poa pratensis L.). Polynomial trend analyses indicated highly significant linear and quadratic response curves for percentage of tall fescue reduction for each herbicide. Fall and spring treatments with chlorsulfuron and diclofop provided significant tall fescue control, with slight to moderate initial Kentucky bluegrass phytotoxicity. Fall and spring applications of sulfometuron resulted in excellent tall fescue control, but initial Kentucky bluegrass damage was severe and would be unacceptable for high maintenance turf. Chemical names used: 2-chloro- N -[[(4-methoxy-6-methyl-l,3,5-triazin-2-yl)amino]carbonyl]-benzenesulfonamide (chlorsulfuron); 2-[4-(2,4-dichlorophenoxy)phenoxy]proponoate (diclofop); N -[[(4,6-dimethylpyrimidin-2-yl)amino]carbonyl]-2-methoxycarbonyl-benzenesulfonamide (sulfometuron).

Free access

B.I. Reisch, R.M. Pool, W.B. Robinson, T. Henick-Kling, B.K. Gavitt, J.P. Watson, M.H. Martens, R.S. Luce, and H.C. Barrett