Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lynne Carpenter-Boggs x
Clear All Modify Search

Organic orchards represent a significant and growing component of Washington state agriculture. Comparison studies have shown that organic apple systems can be equally profitable yet more environmentally sustainable than their conventional counterparts. Despite this success, sustainable methods of weed control, fertility, and soil quality stabilization and improvement have remained a challenge. Intensive cultivation is commonly used to control weeds in organic orchards. This can lead to reduced or degraded soil organic matter, structure, water infiltration, aerated pore space, and other soil productivity parameters. In addition, tillage accelerates nutrient cycling and can result in the loss of valuable nutrients from the system. To address the need for sustainable organic methods of weed management, an integrated study of alternative understory management options was established in a newly planted orchard in 2005. Weed control measures included efficient tillage using a Wonder weeder, organically approved herbicide, wood chip mulch, and living cover mulches. Three rates of nitrogen (low, medium, and high) were applied across the Wonder weeder, wood chip, and living cover mulch plots in order to determine ideal N fertility rate. Analyses of total C and N and N-15 in organic fertilizers, soil pools, living cover biomass, and tree leaves are being used to track N and C cycling and partitioning, N-use efficiency, soil quality, and to determine optimal fertility guidelines. Preliminary results indicate intense competition between living mulch understory and orchard trees, and a trade-off may exist between maximizing soil quality and orchard productivity.

Free access

Synchronizing the supply of plant-available nitrogen (N) from organic materials with the N needs of apple trees is essential to cost-effective organic apple production. Tree growth and organic matter mineralization are affected by orchard floor management. This study examines the effects of three orchard floor management systems, cultivation, wood chip mulch, and a legume cover crop, on the accumulation and partitioning of compost-derived N in young apple (Malus domestica Borkh.) trees at different compost application dates across two growing seasons. Compost enriched with 15N was applied to apple trees in April, May, and June of 2006 and 2007, and trees were excavated in Sept. 2007 to determine the fate of labeled compost N. Trees with wood chip mulch had significantly greater dry weight and N accumulation in vegetative tree components than trees with cultivation or legume cover. Fruit yields were similar between cultivation and wood chip treatments despite less vegetative growth under cultivation, as these trees partitioned more dry weight into fruit (44%) than wood chip mulch trees (31%). Nitrogen-use efficiency by trees was lower with a living legume cover crop than in other treatments due to competition for resources. In the cover crop aboveground biomass, 20% to 100% of the N was derived from compost. In comparison, only 5% to 40% of N in the decomposing wood chip mulch originated from compost. Tree reserves were an important source of N for spring fruit and leaf growth in all treatments, but significantly more so for trees in the cultivation treatment. Fruit and leaves were strong sinks for compost N early in the season, with trees allocating 72% of spring N uptake into leaves and fruit. In the summer, N uptake increased improving compost N-use efficiency. Summer N was preferentially allocated to perennial tissues (71%), bolstering N reserves. Trees with wood chip mulch performed well and had greater capacity to build N reserves, making wood chips ideal for establishing young organic apple orchards. However, as the orchard matures, it may be beneficial to switch to a groundcover that reduces tree vegetative growth.

Free access

This study evaluated the effects of in-row groundcovers (bare ground, brassica seed meal, cultivation, wood chip mulch, legume cover crop, and non-legume cover crop) and three compost rates (48, 101, and 152 kg available nitrogen (N)/ha/year) on soil carbon (C) pools, biological activity, N supply, fruit yield, and tree growth in a newly planted apple (Malus domestica Borkh.) orchard. We used nonlinear regression analysis of C mineralization curves to differentiate C into active and slow soil C pools. Bare ground and cultivation had large active soil C pools, 1.07 and 0.89 g C/kg soil, respectively, but showed little stabilization of C into the slow soil C pool. The use of brassica seed meal resulted in increased soil N supply, the slow soil C pool, and earthworm activity but not total soil C and N, fruit yield, or tree growth. Legume and non-legume cover crops had increased microbial biomass and the slow soil C pool but had lower fruit yield and tree growth than all other groundcovers regardless of compost rate. Soils under wood chip mulch had elevated earthworm activity, total soil C and N, and the slow soil C pool. Wood chip mulch also had the greatest cumulative C mineralization and a high C:N ratio, which resulted in slight N immobilization. Nevertheless, trees in the two wood chip treatments ranked in the top four of the 13 treatments in both fruit yield and tree growth. Wood chip mulch offered the best balance of tree performance and soil quality of all treatments.

Free access