Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lushan Ghimire x
Clear All Modify Search

Huanglongbing [HLB (Candidatus Liberibacter asiaticus)] is one of the most devastating diseases in citrus (Citrus sp.). Field observations in Florida have shown that citrus groves with high soil and irrigation water pH decline rapidly under HLB-prevalent conditions. It is worth noting that irrigation water pH has always been high in Florida; however, neither tree decline nor low productivity under such conditions has been an issue for citrus before HLB. Therefore, there is a need to determine if HLB increases citrus tree sensitivity to high-pH irrigation water. The objective of this research was to evaluate the molecular and physiological responses of healthy and HLB-affected citrus trees irrigated with water at pH levels of 5.8, 7.0, and 8.0. The results demonstrated that soil pH is positively correlated with irrigation water pH. Overall, regardless of disease occurrence, tree performance decreased as pH increased. HLB-affected trees at pH 8.0 had the greatest mortality (40%) and leaf drop (87%) and the lowest height growth (<1%) and leaf biomass (0.1 g). In contrast, HLB-affected trees at pH 5.8 had the lowest mortality (0%) and leaf drop (16%) and the greatest height growth (6.6%) and leaf biomass (5.5 g). Growth and survival data indicate that high pH had a less negative impact on healthy trees than HLB-affected trees, and that HLB symptoms were exacerbated at pH 8.0 compared with pH 5.8. A transcriptomic analysis of root tissue conducted at the end of the experiment further suggested that HLB-affected trees at pH 5.8 were actively detoxing stress-induced radicals and had increased growth and developmental processes with the downregulation of jasmonic acid biosynthesis compared with healthy trees. This implies that at pH 5.8, HLB-affected trees were under less stress than healthy trees. Compared with healthy trees, HLB-affected trees at pH 8.0 resulted in upregulated immune system processes, defense responses, and cell death; no processes were significantly downregulated in HLB-affected trees compared with healthy trees at pH 8.0. Physiological and molecular observations suggest an interaction between HLB and irrigation water pH whereby HLB symptoms are exacerbated in response to high irrigation water pH.

Open Access

Huanglongbing {HLB [Candidatus Liberibacter asiaticus (C Las)]} has been one of the biggest challenges in citrus (Citrus sp.) production in Florida and wherever it is present. HLB-affected trees show significant shoot and root dieback, fruit drop, and reduction in yield. Currently, there is no cure for HLB, and there is no commercial HLB-resistant germplasm. Nonetheless, intensive nutrient management has been promising for citrus growers. The nutrient requirement of HLB-affected trees seems to be greater than that of healthy citrus trees. By understanding the nutrient uptake potential of rootstocks, fertilizer programs can be customized accordingly to enhance the performance of a rootstock in existing groves. Moreover, a reduction in the application of nutrients is possible by planting rootstocks with a high nutrient absorption capacity. Use of rootstocks with good nutrient uptake efficiency can take some burden off the growers who are intensively managing HLB-affected citrus groves. Therefore, the objective of this study was to evaluate and understand the nutrient uptake potential of the citrus rootstocks. To achieve this objective, a 100% hydroponic greenhouse study was conducted with six rootstocks with a range of tolerance to HLB. Several physiological and molecular tools were applied to evaluate the rootstocks for their nutrient uptake potential. A+Volk × O-19 (HLB-tolerant) rootstock had greater nutrient uptake efficiency, whereas US-896 (HLB-susceptible) had lesser nutrient uptake efficiency. Swingle, one of the most popular pre-HLB rootstocks, had poor zinc uptake and the least expression of ZINC TRANSPORTER, suggesting that zinc applications should be emphasized in Swingle plantings. US-896 rootstock expressed the least level of nutrient transporter genes, such as IRON TRANSPORTER. UFR-4 (a good performer under HLB conditions) had a large root biomass, but the uptake efficiency for nutrients was poor, suggesting that the nutrient uptake potential is a complex process that is not solely dependent on root biomass. This study is unique because it is one of the first citrus studies to report nutrient uptake efficiency and the potential of rootstocks. The information presented can be used to improve performance or select better-performing rootstocks under HLB conditions.

Open Access