Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Luna Sun x
Clear All Modify Search
Free access

Oscar L. Vargas, David R. Bryla, Jerry E. Weiland, Bernadine C. Strik and Luna Sun

The use of conventional drip and alternative micro irrigation systems were evaluated for 3 years in six newly planted cultivars (Earliblue, Duke, Draper, Bluecrop, Elliott, and Aurora) of northern highbush blueberry (Vaccinium corymbosum L.). The drip system included two lines of tubing on each side of the row with in-line drip emitters at every 0.45 m. The alternative systems included geotextile tape and microsprinklers. The geotextile tape was placed alongside the plants and dispersed water and nutrients over the entire length. Microsprinklers were installed between every other plant at a height of 1.2 m. Nitrogen was applied by fertigation at annual rates of 100 and 200 kg·ha−1 N by drip, 200 kg·ha−1 N by geotextile tape, and 280 kg·ha−1 N by microsprinklers. By the end of the first season, plant size, in terms of canopy cover, was greatest with geotextile tape, on average, and lowest with microsprinklers or drip at the lower N rate. The following year, canopy cover was similar with geotextile tape and drip at the higher N rate in each cultivar, and was lowest with microsprinklers in all but ‘Draper’. In most of the cultivars, geotextile tape and drip at the higher N rate resulted in greater leaf N concentrations than microsprinklers or drip at the lower N rate, particularly during the first year after planting. By the third year, yield averaged 3.1–9.1 t·ha−1 among the cultivars, but was similar with geotextile tape and drip at either N rate, and was only lower with microsprinklers. Overall, drip was more cost effective than geotextile tape, and fertigation with 100 kg·ha−1 N by drip was sufficient to maximize early fruit production in each cultivar. Microsprinklers were less effective by comparison and resulted in white salt deposits on the fruit.