Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Luca Corelli-Grappadelli x
Clear All Modify Search

The effects of shoot length, fruit density, thinning patterns, and light levels on crop quality of peach (Prunus persica Batsch.) were investigated. On shoots 50 and 75 cm long, fruits were thinned to produce several distribution patterns, with peaches concentrated in the bottom, middle, or distal portion of the shoot, or uniformly spaced along the shoot at two fruit densities (≈10 or 15 cm between fruit). The lower fruit density on the longer shoots resulted in larger fruits. At the same fruit density, fruits clustered in the distal section of the shoot were smaller, with lower soluble solids concentration (SSC) and a smaller percentage of the exocarp colored red than for the other spacing patterns. Photosynthetically active radiation (PAR) was negatively correlated with the percentage of green exocarp and positively correlated with the percentage of red exocarp. However, the low correlation coefficients (0.45 and 0.50, respectively) indicate that even low light levels can result in substantial red pigment development in peach fruit.

Free access

Based on a commercially available net photosynthesis (Pn) unit coupled to a custom-built chamber that does not require air conditioning, a low-cost system to measure whole-tree gas exchange in the field is described. The temperature in the chamber is influenced by air flow in relation to tree size. A flow of 20 liters·s-1 (equal to ≈1.5 chamber volume changes/min) was sufficient to maintain the leaves of an 11-year-old `Golden Delicious'/M.27 tree at a temperature similar to that of the ambient air and control CO2 gradients in the chamber. The system has been in operation on apple (Malus domestica Borkh.) trees for up to 4 months without modifying tree behavior.

Free access

Experiments were carried out for 3 years on `Gala' and `Fuji' apple cultivars. The efficacy of the compounds applied during blooming (ATS, Armothin) and at 10 mm king fruit diameter (BA, CPPU, and NAA) was studied. Results showed a poor efficacy of the chemicals applied during bloom, while compounds applied at fruit set showed interesting results. Among the new chemicals, citokinins were the most effective, although their effects were related to the cultivar: BA performs better than CPPU on `Fuji' while vice versa on `Gala'. In addition, both chemicals induced a slightly higher °Brix content, and acidity level showed the tendency to increase L/D ratio of the fruits as compared to controls. Fruit thinning and the strategies to enhance fruit size are applied early in the season and the problem remains, to assess their effectiveness as early as possible in order to adapt the management techniques (e.g., further thinning, if applicable, or fine-tuning of nutrition and irrigation, etc.) to enable the fruit to reach their maximum potential development. A modelling approach proposed by Lakso et al. (1995) postulates that apples grow in weight according to an equation termed “expolinear” (Goudriaan and Monteith, 1990) because after an initial phase of exponential growth (cell division), the apple enters a phase of linear growth (cell expansion) lasting up to harvest. The effectiveness of a thinning agent can therefore be evaluated-and explained-in terms either of the number of cells of the cortex tissue, or of their volume, or both. In addition, assessing the slope of the linear phase as early as possible might provide a prediction tool to evaluate size at harvest. This paper presents data from apple thinning trials on several cultivars. The effectiveness of these applications has been evaluated via an analysis of the cell parameters (number, volume and intercellular spaces) of the fruit's parenchyma cortex tissue. Also, fruit growth data have been used to test the possibility to predict fruit size at harvest once the fruit reaches the phase of linear growth.

Free access

This work proposes a methodology, by light-scanning below the canopy, to directly estimate the photon flux radiation (400–1200 nm) intercepted by single or row canopies. The system is based on the assumption that the light intercepted by the canopy, at a particular time, corresponds to the difference between the incoming potential radiation on a ground surface area (able to include the ground area shaded by the canopy), and the actual radiation influx to that area in presence of the canopy. To this purpose, light-scanning equipment has been designed, built, and tested, whose main components are two aligned multi-sensor bars (1.2 m long) and a CR10 data logger, equipped with an AM 416 Relay Multiplexer (Campbell Sci. Ltd., U.K.). The radiation sensors (BPW 14N TELEFUNKEN) were chosen because of their spectral sensitivity, along with low cost. The sensors have been placed along the bars, at 5-cm intervals, and fitted with a Teflon® diffuser to provide a cosine correction. Radiation measurements are taken moving parallelly the bars on the ground, step by step, to monitor a sample point grid (5 cm by step length). Preliminary radiation scans were taken during the summer in a 3-year-old peach orchard, trained as delayed vasette. Measurements were taken for a single canopy at various hours of the day. Moreover, radiation scans were taken at the same hour, over a 3-day timespan, while gradually defoliating the canopy. A custom-built software program has been developed for data handling. Mathcad software (Mathsoft Inc., U.S.) has been used to display the canopy shade image projected on the ground, the quantum map of the monitored area, and to calculate the light influx on the whole canopy. Moreover, the light spots on the ground determined by foliage gaps have been identified and the amount of radiation reaching the ground has been be estimated.

Free access

Training system efficiency may be defined as the ratio of fruit produced to the amount of light intercepted by the canopy. In apple, a positive, linear relationship between yield and light intercepted is generally found, but in peach similar data are hard to come by. This paper reports data from an ongoing training systems trial now in the 7th year, with trees trained as Y, palmette, and delayed vase. During the life of the orchard, light interception has been measured for the different tree shapes, the yields have been recorded, and, in some years, whole-canopy gas exchanges of cropping trees have been measured. In general, the trees have been intercepting light in amounts proportional to canopy shape and tree density, with the Y (planted at higher density) intercepting more light than the other two systems, which appear more comparable to each other, despite the fact that they intercept light during the day in different ways, with the delayed vase exposing more or less the same leaves to incoming light during most of the day. Cropping has followed the amounts of light intercepted, with higher yields for the Y, without appreciable differences in fruit quality traits. The data accumulated so far indicate furthermore that the palmette and the delayed vase, despite slightly different light interception potentials (lower for the palmette), have similar yields. This might depend in part on the fact that these two systems intercept light according to different patterns during the day, with the palmette—which distributes the light intercepted in a more even fashion between the two sides—perhaps at an advantage over the vase in terms of managing the stress of excessive light (heat) loads during the central hours of the day. Whole canopy Carbon exchange data have been found to be in agreement with the patterns of light interception.

Free access

This work describes a fruit gauge based on a low-cost linear potentiometer interfaced to a data-logger, which allows continuous measurement of fruit diameter. The sensor is supported by a custom-built stainless steel frame designed to be easily applied to different size fruits. Highly significant linear relationships between tension (mV) and displacement (mm) have been found during sensor calibration. The average slope of this relationship, 5.4 × 10−3 with a standard deviation of 5 × 10−5, was used as conversion coefficient. Temperature stability was tested by submitting both the sensor and the whole gauge to a temperature range of 5–60 °C. The maximum deflection found was ±1 mV. Measurements performed during the three developmental stages of peach [Prunus persica (L), Batsch.] fruit showed high sensitivity of the gauge which allowed clear detection of diurnal patterns of fruit diameter changes and precise monitoring of minute variations in fruit growth rates during 24 h.

Free access

Photoselective nets were used to examine apple shoot physiology during dormancy and budbreak. Two trials were conducted: one in the field and one in controlled conditions. In the first, three colored nets (red, blue, and white, shading 20%) covered sections of single trees, leaving an empty portion as control, from December to April. The white net increased canopy air temperature compared with the blue one. Differences were found in carbohydrate seasonal patterns; however, it appeared that soil temperature had higher impacts on sugar movement in the trees. No differences were found in bud phenology. In the second trial, cuttings were placed in boxes constructed with the same-colored nets and monitored from the end of February to April. Results showed differences in phenology and carbohydrate translocation. The white box hastened bloom and its cuttings had higher amounts of carbohydrates at the end of the trial. On the contrary, the blue box delayed bloom while resources were still being consumed and its cuttings had the lowest amounts of reserves at the end of the trial. These results add new insights on apple physiology under different light spectra and commercial applications should not be excluded for improving crop management.

Open Access