Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lori A. Black x
  • Refine by Access: All x
Clear All Modify Search
Free access

Lori A. Black, Terril A. Nell, and James E. Barrett

Dormant-budded `Gloria' azaleas (Rhododendron sp.) at various maturity levels (one, eight, or 32 individual open flowers) were moved from the greenhouse to postproduction rooms. Postproduction rooms were maintained at 21 ± 1C, relative humidity 50% ± 5%, and 12 hours of daily irradiance at 12 μmol·s–1·m–2 from cool-white fluorescent lamps to simulate home conditions. Using predetermined categories, the number of tight, showing-color, candle, and open-flower inflorescences were recorded. After 2 weeks postproduction, plants chosen at the start of postproduction with eight or 32 individual open flowers had the best flowering uniformity and flower color. In a second experiment, azaleas with one, eight, or 32 individual open flowers were placed into simulated transport for 4 days at 16 ± 1C. Plants with one individual open flower had greatest longevity, but those with eight open flowers had the best overall postproduction performance. In a final experiment, azaleas at similar maturity levels were placed in simulated transport at 5, 16, or 27C for 2, 4, or 6 days. After 2 weeks postprodudion, there was no difference due to simulated-transport temperature or duration on flowering performance or flower color. Longevity was good for plants held 2, 4, or 6 days at 5C and for plants held for 2 days at 16 or 27C.

Free access

Lori A. Black, Terril A. Nell, and James E. Barrett

Free access

Lori A. Black, Terril A. Nell, and James E. Barrett

Dormant-budded `Gloria' azaleas (Rhododendron sp.) were used to observe the effect of forcing irradiance, temperature, and fertilization on postproduction performance after flower bud dormancy had been broken. Four experiments were conducted during forcing, the treatments for each experiment were: Expt. 1, three forcing irradiances (200,460, and 900 μmol·m-2·s-1) and three postproduction irradiances (4, 8, and 16 μmol·m-z·s-1); Expt. 2, three forcing irradiances (320, 560, and 1110 μmol·m-2s-l); Expt. 3, three controlled day/night temperatures (18/16C, 23/21C, and 29/27C); Expt. 4, fertilizer applied for 7, 14, or 28 days at either 150 or 300 mg N/liter (12% nitrate, 8% ammoniacal) 20N-4.8P-16K soluble fertilizer at every watering, control plants did not receive fertilizer. Days to harvest (time until plants had eight individual open flowers) was less at the high forcing irradiances and temperatures and when fertilizer was applied during forcing. Flower color was less intense at the low forcing irradiance levels, high temperatures, and when duration of fertilization was prolonged and concentration was high. There were more open flower inflorescences at week 2 of postproduction at high forcing irradiance levels, but their number was not affected by forcing temperature or fertilization. Postproduction longevity was shorter when forcing was at 29/27C (day/night) and when plants were fertilized for 28 days at 300 mg N/liter, but was not affected by forcing or postproduction irradiance.