Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Long Li x
Clear All Modify Search
Author:

Abstract

Peach [Prunus persica (L.) Batsch] originated in China, and according to ancient Chinese literature, the culture of the peach (tao) in China dates back at least 3000 years. Shi Jing, the book of songs written about 1000 bc, describes pink peach blossoms on the twigs and peach trees with ripe fruit in the orchard (1). These records infer that the peach was cultivated by the time of Zhou Dynasty, 3000 years ago.

Open Access

Paeonia delavayi is a species endemic to Southwest China and an important genetic resource for flower color breeding of tree peonies. The mechanisms underlying the flower coloration of this plant have not been fully elucidated. In this article, the petals of yellow-colored individual (Pl) and purple–red-colored individual (Pd) of P. delavayi were studied. And anatomical observations revealed that a large amount of yellow protoplasts and a small amount of colorless protoplasts were located in the yellow-colored Pl petals, whereas a mixture of purple, red, and pink protoplasts were observed in the purple–red-colored Pd petals. The Pl cells were subrotund and flat, whereas the Pd cells were irregularly polygon-shaped and bulging. Chemical analyses were performed, and the results indicated that significant differences occurred between the cell sap pH of the Pl and Pd flowers and large differences occurred in the contents of Fe and Al between Pl and Pd. Cyanidin- and peonidin-based anthocyanins with flavones and flavonols as copigments determined the Pd flower color, whereas chalcone 2 ′G with apigenin 7-O-neohesperidoside and chrysoeriol 7-O-glucoside as copigments determined the yellow color of Pl. Correspondingly, the genes dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were significantly highly expressed in Pd, whereas chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavone synthase (FNS), flavonol synthase (FLS), flavonoid 7-O-glycosyltransferase (7GT), and 2′4′6′4-tetrahydroxychalcone 2′-glucosyltransferase (THC) had high transcript levels in Pl relative to Pd. The results indicate that the color variation of P. delavayi petals may be related to a delicately controlled balance of the aforementioned factors.

Free access

Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicinal plant. It produces various phytochemicals, particularly polysaccharides, which have nutraceutical and pharmaceutical values. To increase its biomass production and polysaccharide content, our breeding program has generated a series of polyploid cultivars through colchicine treatment of protocorm-like bodies (PLBs). The present study compared two tetraploid cultivars, 201-1-T1 and 201-1-T2, with their diploid parental cultivar, 201-1, in an established in vitro culture system. Tetraploid ‘201-1-T1’ and ‘201-1-T2’ had shorter leaves and shorter and thicker stems and roots, and they produced higher biomass compared with the diploid cultivar. The length and width of stomata significantly increased, but stomatal density decreased in tetraploid cultivars. The PLB induction rates from the stem node explants of the tetraploid cultivars were significantly higher than those of diploid. However, the PLB proliferation of tetraploids was lower than that of the diploid. The mean number of plantlets regenerated from tetraploid PLBs was also lower than that of the diploid after 4 months of culture. Polysaccharide contents in stems, leaves, and roots of 6-month-old tetraploid plantlets were significantly higher than those of diploids. The polysaccharide content in the stem of ‘201-1-T1’ was 12.70%, which was a 2-fold increase compared with the diploid cultivar. Our results showed that chromosome doubling could be a viable way of improving D. officinale in biomass and polysaccharide production.

Free access

This study aimed to investigate the flowering biological characteristics, floral organ characteristics, and pollen morphology of Camellia weiningensis Y.K. Li. These features of adult C. weiningensis plants were observed via light microscopy and scanning electron microscopy (SEM). Pollen viability and stigma receptivity were detected using 2,3,5-triphenyltetrazole chloride (TTC) staining and the benzidine–hydrogen peroxide reaction method. C. weiningensis is monoecious, with alternate leaves and glabrous branchlets. Its flowering period lasts 2 to 4 months, and the flowering time of individual plants lasts ≈50 days, with the peak flowering period from the end of February to the middle of March. It is a “centralized flowering” plant that attracts a large number of pollinators. Individual flowers are open for 12 to 13 days, mostly between 1230 and 1630 hr, and include four to six sepals, six to eight petals, ≈106 stamens, an outer ring of ≈24.6-mm-long stamens, an inner ring of ≈13.4-mm-long stamens, one pistil, and nine to 12 ovules. The flowers are light pink. The style is two- to three-lobed and 16.6 mm long, showing a curly “Y” shape. The contact surface of the style is covered with papillary cells and displays abundant secretory fluid and a full shape, facilitating pollen adhesion. The pollen is rhombohedral cone-shaped, and there are germ pores (tremoids). The groove of the germ pore is slender and extends to the two poles (nearly reaching the two poles). The pollen is spherical in equatorial view and trilobate in polar view. The pollen vitality was highest at the full flowering stage, and the stigma receptivity was greatest on days 2 to 3 of flowering. The best concentration of sucrose medium for pollen germination was 100 g/L. The number of pollen grains per anther was ≈2173, and the pollen-to-ovule ratio was 23,034:1. C. weiningensis is cross-pollinated. Seventy-two hours after cross-pollination, the pollen tube reached the base, and a small part entered the ovary. The time when the pollen tube reached the base after pollination was later than that in commonly grown Camellia oleifera. The results of this study might lay an important foundation for the flowering management, pollination time selection, and cross-breeding of C. weiningensis.

Open Access

Camellia weiningensis is a typical woody edible oil tree species in the northwest alpine area of Guizhou Province, China, but its embryological development is not fully elucidated. Here, we assessed flower bud differentiation, microsporogenesis, and male-female gametophyte development in this species. We performed cytological observations of flower bud development in C. weiningensis through conventional paraffin sectioning, scanning electron microscopy, and stereomicroscopy to establish the corresponding relationships between the external morphology and internal structure. The flowers were hermaphroditic and exhibited a short flower bud differentiation time. Although pistil development occurred later than stamen development, both organs matured synchronously before flowering. The anther contained four sacs that exhibited a butterfly shape in transverse sections. The anther wall comprised the epidermis, anther chamber inner wall, two middle layers, and a glandular tapetum (from outside to inside). Microspore mother cells formed a tetrahedral tetrad through meiosis, mature pollen was two-celled with three germination pores, and the ovary comprised three to five chambers (three chambers predominated). Multiple ovules were invertedly attached to the axial placentation and exhibited double integuments and a thin nucellus. The embryo sac exhibited Allium-type development, and the mature embryo sac was seven-celled and eight-nucleated. In C. weiningensis, embryonic development does not exhibit abnormalities, and stamen development occurs earlier than pistil development. During flower bud development, the inner development process of male and female cells can be judged according to their external morphological characteristics. Our results may provide a theoretical basis for regulating flowering in and the cross-breeding of C. weiningensis.

Open Access

Tree peony (Paeonia sp.) is a popular traditional ornamental plant in China. Among the nine wild species, Paeonia rockii displays wide-ranging, deep purple variegation at the base of the petals, whereas Paeonia ostii exhibits purely white petals. Overall, the posttranscriptional regulation involved in tree peony flower opening and pigmentation remains unclear. To identify potential microRNAs (miRNAs) involved in flower variegation, six small RNA libraries of P. ostii and P. rockii petals at three different opening stages were constructed and sequenced. Using Illumina-based sequencing, 22 conserved miRNAs and 27 novel miRNAs were identified in P. rockii and P. ostii petals. Seventeen miRNAs were differentially expressed during flower development, and several putative target genes of these miRNAs belonged to transcription factor families, such as Myb domain (MYB), and basic helix-loop-helix (bHLH) transcription factors. Furthermore, an integrative analysis of the expression profiles of miRNAs and their corresponding target genes revealed that variegation formation might be regulated by miR159c, miR168, miR396a, and novel_miR_05, which target the MYB transcription factors, chalcone synthase (CHS), and ABC transporter. Our preliminary study is the first report of miRNAs involved in Paeonia flower pigmentation. It provides insight regarding the molecular mechanisms underlying the regulation of flower pigmentation in tree peony.

Free access

Monochromatic light and wide-band white light both affect plant growth and development. However, the different effects between monochromatic light and addition white light to monochromatic light on the formation, growth, and dormancy of microtubers have not been fully explored. Therefore, we evaluated these effects using in vitro potatoes grown under pure blue and red lights and a combination of blue light and red light supplemented with white light, respectively. Current results suggested that light spectra influenced microtuber formation, growth, and dormancy by regulating potato plantlet morphogenesis, affecting the synthesis and transportation of photosynthetic metabolites, and altering the accumulation and distribution of biomass in various plant tissues. Monochromatic lights and the combined spectra had differing effects. For instance, monochromatic red light induced the growth of more microtubers, whereas addition white light to red light decreased number but increased weight of microtubers. Meanwhile, monochromatic blue light facilitated tuber growth, whereas addition white light to blue light decreased microtubers weight but increased microtuber number. In addition, composite lights of addition white light to monochromatic red and blue lights both extended the dormancy period, and monochromatic blue light shortened the dormancy period of microtubers >300 mg. Therefore, in microtuber agricultural production, specific light conditions may be applied at different growth stages of in vitro potatoes to increase the number of effective microtubers (>50 mg) and to satisfy storing requirement of seed microtubers.

Open Access

Ventilation and soil moisture influence greenhouse cultivation. Experiments were conducted at Xinxiang Irrigation Research Base of the Chinese Academy of Agricultural Sciences, Henan Province, China, to identify how ventilation and irrigation affected the greenhouse microenvironment. To develop ventilation and irrigation protocols that increase crop yield and improve the quality of drip-irrigated tomatoes grown in the greenhouse, three ventilation modes (T1, T2, and T3) were developed by opening vents in different locations in a completely randomized pattern. T1 had open vents on the north wall and roof of the greenhouse. T2 had open vents on the north and south walls and the roof. T3 had open vents on the north and south walls. Three irrigation treatments (W1, W2, and W3) were designed based on the accumulated water surface evaporation (Ep ) of a standard 20-cm evaporation pan. The irrigation quantities were 0.9×Ep (W1), 0.7×Ep (W2), and 0.5×Ep (W3). The spatial and temporal distributions of temperature and humidity were analyzed for different combinations of ventilation and irrigation to identify their effects on tomato yield and fruit quality. Major results were as follows: 1) In addition to solar radiation, ventilation had an important influence on Ep and, on a daily scale, ventilation had a significant effect on Ep (P < 0.05). 2) Ventilation had a significant effect on indoor wind speed, but the effect varied during different growth stages. During the flowering and fruit setting stage, wind speed for T2 significantly differed from those of T1 and T3 (P < 0.01). During the harvest stage, the three ventilation treatments had significantly different effects (P < 0.01). A correlation analysis showed high correlation between T2 wind speed and T3 wind speed (R = 0.831), but low correlation between T2 wind speed and T1 wind speed (R = 0.467). 3) The effect of ventilation on greenhouse humidity and temperature was greater than the effect of irrigation. The differences in air temperature among various combined treatments of ventilation and irrigation were significant for the flowering and fruiting stages (P < 0.05), but they were not significant for the late harvest stage (P > 0.05). There were significant differences in humidity on sunny days (P < 0.01), but no significant differences on cloudy or rainy days (P > 0.05). Air temperature at 2 m was greater than canopy temperature, but humidity at 2 m was less than that at canopy level. 4) Irrigation water quantity was positively correlated with tomato yield and negatively correlated with the fruit quality indicators total soluble solids, vitamin C content, organic acid content, and soluble sugars content. Ventilation had an effect primarily during the harvest period; it had no significant effect on yield (P > 0.05). However, it had a significant effect on vitamin C content and the sugar:acid ratio (P < 0.01). The combination treatment of T2W2 is recommended as the optimal treatment for greenhouse tomatoes using drip irrigation to produce an optimal combination of crop yield and fruit quality. This study provides theoretical and technical support for the improvement of greenhouse climate control by optimizing greenhouse ventilation and irrigation techniques to promote tomato yield and improve fruit quality.

Open Access

Ten polymorphic microsatellite loci were isolated and characterized from an enriched genomic library of Paphiopedilum concolor (Batem.) Pfitzer. The number of alleles per microsatellite locus ranged from three to 11 with an average of 6.4 in a sample of 30 individuals from three populations. The observed and expected heterozygosity ranged from 0.200 to 0.800 and from 0.544 to 0.827, respectively. These microsatellites can be used as tools to investigate the genetic structure of P. concolor populations and relationship patterns with closely related taxa.

Free access

As a result of its high photosynthetic efficiency, the tung tree (Vernicia fordii) is a fast-growing heliophile, yielding fruit within 3 years. In addition, tung oil extracted from the fruit seeds is an environmentally friendly paint used widely in China. However, mutual shading inside a tung tree canopy leads to a low yield of fruit because of weak or dead lower branches. In this project, a pot experiment was conducted to understand the growth, physiological, anatomical structure, and biochemical responses of tung trees under various shading levels. Tung tree seedlings were subjected to different light intensities—100% sunlight (no cover), L100; 75% sunlight (25% shading), L75; 50% sunlight (50% shading), L50; and 20% sunlight (80% shading), L20—from June to August. Results indicate that the L75 treatment reduced significantly the net photosynthetic rate (Pn), stomatal conductance (g S), transpiration rate (E), total aboveground and root dry weight (DW), maximum net photosynthetic rate (A max), and maximum rate of electron transport at saturating irradiance (Jmax) compared with the control, although plant height and leaf area (LA) were not reduced. Lower light intensities (L50 and L20) and longer duration of treatment led to greater reduction in growth, leaf thickness, and photosynthetic potential (A max and Jmax). Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll content were increased in the L50 and L20 treatments compared with L100 and L75. There was no significant reduction in the enzyme activities of ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate (PEPC) of the seedlings using the L75 treatment; however, lower light intensities (L50 and L20) and longer duration of shade treatment resulted in a significant reduction in enzyme activity. In summary, the results suggest that tung trees have greater photosynthetic activity under high light intensity. Shading, even at 20%, especially for the longer term, reduced photosynthetic efficiency and growth. To prevent growth reduction, tung trees should be grown under full sun with a daily light integral (DLI) of ≈46 mol·m‒2·d‒1, and mutual shading should be avoided by proper spacing and pruning.

Free access