Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Logan S. Logendra x
Rockwool is an excellent growing medium for the hydroponic production of tomato; however, the standard size rockwool blocks [4 × 4 × 2.5 inches (10 × 10 × 6.3 cm) or 3 × 3 × 2.5 inches (7.5 × 7.5 × 6.3 cm)] are expensive. The following experiments were conducted with less expensive minirock wool blocks (MRBs), on rayon polyester material (RPM) as a bench top liner, to reduce the production cost of tomatoes (Lycopersicon esculentum) grown in a limited-cluster, ebb and flood hydroponic cultivation system. Fruit yield for single-cluster plants growing in MRBs [2 × 2 × 1.6 inches (5 × 5 × 4 cm) and 1.6 × 1.6 × 1.6 inches (4 × 4 × 4 cm)] was not significantly different from plants grown in larger sized blocks (3 × 3 × 2.5 inches). When the bench top was lined with RPM, roots penetrated the RPM, and an extensive root mat developed between the RPM and the bench top. The fruit yield from plants on RPM was significantly increased compared to plants without RPM due to increases in fruit size and fruit number. RPM also significantly reduced the incidence of blossom-end rot. In a second experiment, single- and double-cluster plants were grown on RPM. Fruit yield for double-cluster plants was 40% greater than for single-cluster plants due to an increase in fruit number, although the fruit were smaller in size. As in the first experiment, fruit yield for all plants grown in MRBs was not significantly different from plants grown in the larger sized blocks. MRBs and a RPM bench liner are an effective combination in the production of limited-cluster hydroponic tomatoes.
A mixture of C8/C10 fatty acid methyl esters (FAME) when applied directly and exclusively to leaf axils of greenhouse-grown tomato (Lycopersicon esculentum Mill.) significantly inhibited side shoot development. Plants grown in a single cluster production system in winter produced 8.9 side shoots/plant, whereas those treated with C8/C10 FAME 45 days after sowing, produced only 0.7 side shoots/plant. Total pruning weight of the side shoots was reduced from 40.2 g/plant to 1.3 g/plant. Fruit yield increased 14% with C8/C10 FAME treatment and there was an increase in the harvest index from 0.63 to 0.70. For a spring crop, in which average daily irradiance was more than twice that in winter, overall yield increased 70% when compared to the winter crop. As in winter, side shoot number and side shoot weight/plant were significantly reduced by C8/C10 FAME, but there was no difference in crop yield between C8/C10 FAME and untreated plants. In both winter and spring, untreated plants required hand pruning three times during the production period, whereas C8/C10 FAME-treated plants were pruned only once at the time of application. A C8/C10 free fatty acid (FA) mixture was also applied to one and two-cluster plants with similar results. In the multiple cluster system, application of the C8/C10 FA mixture instead of side shoot pruning reduced plant height and increased yield from 6.4 to 7.4 kg/plant. C8/C10 FA or C8/C10 FAME treatment could be a useful labor saving strategy in greenhouse tomato production and may increase crop yield under conditions in which assimilates may be limited by environmental factors, or as a result of a high level of competition from other fruits or shoots.
Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for singlecluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.
Ethephon (2-chloroethylphosphonic acid) was applied to single cluster greenhouse tomato crops (1000 ppm) at the green mature stage of fruit development or when 35% of the plants had fruits at the breaker stage. Fruits were harvested at the pink stage. Untreated fruit were harvested from 95 to 116 days after sowing whereas fruit from the green mature ethephon treatment were harvested from 92 to 102 days, three days earlier and with a reduction in the harvest window from 22 to 11 days. Fruit treated with ethephon at 35% breaker were harvested at the same time as untreated fruit, but harvest was completed after only 12 days. Fruit yield from the green mature ethephon treatment was reduced by about 30%, but there was no significant difference in fruit yield as a result of ethephon treatment at 35% breaker. Fruit color, firmness and soluble solids were evaluated one and six days after harvest. Fruit firmness and soluble solids were unaffected by treatment; however, fruit from the ethephon treatments were significantly redder in color. In a second experiment, ethephon was applied at 500 or 1000 ppm when 100% of the plants had fruit at the breaker stage. Fruit were harvested over a 7-day time interval compared to untreated fruit that were harvested over 14 days, and there was a small but significant increase in fruit yield for the 1000 ppm treatment. Both ethephon treatments also increased fruit soluble solids. For limited cluster tomato production systems, ethephon is effective in reducing the harvest window without loss in postharvest fruit quality.