Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Lisa Tang x
Clear All Modify Search
Full access

Lisa Tang, Shweta Chhajed and Tripti Vashisth

For field-grown ‘Valencia’ sweet orange (Citrus sinensis) affected by Huanglongbing [HLB (Candidatus Liberibacter asiaticus (CLas)], trees that displayed more severe HLB symptoms (severe trees) had 74% fruit drop before harvest; however, the drop rate for less symptomatic trees (mild trees) was 45%. For mature fruit (3 weeks before harvest) still attached to the branches, 60% of them from severe trees were “loose fruit” [fruit detachment force (FT) < 6 kgf]. In contrast, only 13% of the attached fruit from the mild trees were loose. Overall, fresh weight and size of loose fruit were lower than “tight fruit” (FT > 6 kgf). Irrespective of the symptom levels of trees, the concentrations of glucose, fructose, and inositol in juice of loose fruit were the same or larger than those of tight fruit, suggesting that the shortage of carbohydrates is not the dominant cause of HLB-associated preharvest fruit drop. Expression levels of the cell wall modification genes encoding cellulase (endo-1,4-β-glucanase), polygalacturonase, and pectate lyase were greater in the calyx abscission zones of loose fruit compared to tight fruit, indicating that cell separation was occurring in the former at the time of collection. No differences in the expression levels of genes encoding the ethylene biosynthesis enzymes, including 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO), and an ethylene-responsive transcription factor 1 (ERF1) were observed in tissues of loose and tight fruit. Interestingly, ACS, ACO, and EFR1 expressions were lower in calyx abscission zones and in leaves of the severe trees compared with those of mild trees, suggesting an ostensible, HLB-dependent reduction in ethylene biosynthesis and/or signaling close to harvest time. However, the role of ethylene in HLB-associated preharvest fruit drop remains to be determined. The results leave open the possibility of early ethylene production and action before the initiation of fruit abscission.

Open access

Lisa Tang, Sukhdeep Singh and Tripti Vashisth

In the past decade, FL citrus industry has been struck by Huanglongbing (HLB), a disease caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas). Besides tree decline, HLB causes a sharp increase in mature fruit drop before harvest, leading to a substantial reduction in citrus production. The aim of the study was to provide insights in HLB-associated mature fruit drop. For HLB-affected ‘Valencia’ and ‘Hamlin’ sweet orange (Citrus sinensis), trees exhibiting severe symptoms (“severe trees”) had a significantly higher rate of mature fruit drop compared with mildly symptomatic ones (“mild trees”). Interestingly, dropped fruit were smaller than those still attached to tree branches regardless of the symptom levels of trees; overall, fruit of severe trees were smaller than mild trees. The result suggests a negative effect of HLB on fruit growth that may lead to a high incidence to drop subsequently at maturity. This possibility is further supported by the difference in immature fruit size as early as 2 months after bloom between severe and mild trees. Although HLB-triggered phloem plugging due to callose deposition in citrus leaves, which results in disrupted carbohydrate transport, has been documented in literature, the results of the histological analysis demonstrated no consistent pattern of callose deposition in the mature fruit pedicel in relation to the drop incidence. Additionally, sugar concentration in juice was not significantly different between dropped and attached fruit, providing evidence that carbohydrate shortage is not the case for dropped fruit and thus not the predominant cause of HLB-associated mature fruit drop. Notably, the midday water potential was significantly lower for severe than mild trees during the preharvest period (2 weeks before harvest of the current crop) in late March, which was also the second week after full bloom of return flowering. This suggests that altered tree water status due to HLB might limit fruit growth during the initial stage of fruit development (immediately after flowering) and/or increase the incidence of mature fruit abscission, leading to elevated preharvest fruit drop. Together, the results suggest that in the presence of HLB, strategies to increase fruit size and minimize additional stresses (especially drought) for the trees may improve mature fruit retention.

Full access

Wayne Brown, Theo J. Blom, George C.L. Chu, Wei Tang Liu and Lisa Skog

The sensitivity of easter lilies (Lilium longiflorum) to either ethylene or methane (products of incomplete burning in gas-fired unit heaters) was tested during rooting [3 weeks at 18 °C (65 °F)], vernalization [6 weeks at 6 °C (43 °F)] and subsequent greenhouse forcing (15 weeks at 18 °C). Starting at planting, easter lilies were exposed for one of seven consecutive 3-week periods (short-term), or for 0, 3, 6, 9, 12, 15, 18, or 21 weeks starting at planting (long-term) to either ethylene or methane at an average concentration of 2.4 and 2.5 μL·L-1(ppm), respectively. Short- or long-term exposure to ethylene during rooting and vernalization had no effect on the number of buds, leaves, or plant height but increased the number of days to flower. Short-term exposure within 6 weeks after vernalization reduced the number of buds by 1 bud/plant compared to the control (no ethylene exposure). However, extensive bud abortion occurred when plants were exposed to ethylene during the flower development phase. Long-term exposure to ethylene from planting until after the flower initiation period resulted in only two to three buds being initiated, while continued long-term exposure until flowering caused all flower buds to abort. Short-term exposure to methane at any time had no effect on leaf yellowing, bud number, bud abortion, or height and had only a marginal effect on production time. Long-term exposure to methane from planting until the end of vernalization increased both the number of buds, leaves and height without affecting forcing time, leaf yellowing or bud abortion.

Full access

Lisa Tang, Shweta Chhajed, Tripti Vashisth, Mercy A. Olmstead, James W. Olmstead and Thomas A. Colquhoun

To determine how the dormancy-breaking agent hydrogen cyanamide (HC) advances budbreak in peach (Prunus persica), this study compared the transcriptome of buds of low-chill ‘TropicBeauty’ peach trees treated with 1% (v/v) HC and that of nontreated trees at 3 and 7 days after treatment (DAT), respectively, using an RNA sequencing analysis. The peak of total budbreak occurred 6 weeks earlier in the HC-treated trees (at 32 DAT) than the nontreated trees (at 74 DAT). There were 1312 and 1095 differentially expressed genes (DEGs) at 3 and 7 DAT, respectively. At 3 DAT, DEGs related to oxidative stress, including the response to hypoxia, lipid oxidation, and reactive oxygen species (ROS) metabolic process, were upregulated in HC-treated buds. Additionally, DEGs encoding enzymes for ROS scavenging and the pentose phosphate pathway were upregulated at 3 DAT but they were not differently expressed at 7 DAT, indicating a temporary demand for defense mechanisms against HC-triggered oxidative stress. Upregulation of DEGs for cell division and development at 7 DAT, which were downregulated at 3 DAT, suggests that cell activity was initially suppressed but was enhanced within 7 DAT. At 7 DAT, DEGs related to cell wall degradation and modification were upregulated, which was possibly responsible for the burst of buds. The results of this study strongly suggest that HC induces transient oxidative stress shortly after application, leading to the release of bud dormancy and, subsequently, causing an increase in cell activity and cell wall loosening, thereby accelerating budbreak in peach.