Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Lisa Brutcher x
  • All content x
Clear All Modify Search
Full access

Kate Evans, Lisa Brutcher, Bonnie Konishi, and Bruce Barritt

Selecting for crispness instrumentally in fruit from apple (Malus ×domestica) breeding programs is notoriously difficult. Most breeders rely on sensory assessment for this important characteristic. Following the 2009 harvest, we used a computerized penetrometer to assess firmness and texture of apple selections from the Washington State University's apple breeding program and 16 standard reference varieties. Data were compared with sensory data from the apple breeding team. In addition to the expected high correlations between the various firmness measures of the computerized penetrometer and the sensory firmness values, our data also show a significant correlation between the computerized penetrometer crispness value and the sensory crispness value, thus demonstrating the benefit from using this equipment rather than the industry standard Magness–Taylor penetrometer.

Free access

Kate M. Evans, Lisa J. Brutcher, and Bonnie S. Konishi

Inventory control of trees and fruit samples in the Washington State University apple breeding program has been simplified by the use of bar codes. Tree labels incorporate individual bar-coded identities that can be scanned in the field when taking measurements or collecting samples. Bar codes on fruit sample labels also simplify data recording as well as improve the efficiency of the program by greatly reducing the risk of errors. The interface of bar-code identities with data organization and statistical software makes data analysis more straightforward.

Free access

Jennifer Moore-Kucera, Anita Nina Azarenko, Lisa Brutcher, Annie Chozinski, David D. Myrold, and Russell Ingham

Organic growers are required to maintain or improve soil chemical, biological, and physical properties and thus need to integrate biological processes into fertility management. However, few guidelines exist for satisfying tree nutrient demands ecologically. Sound nitrogen (N) management is a key component for overall orchard productivity whereas poor N management may result in multiple environmental impacts, including runoff to surface or leaching to groundwater sources. Many growers substitute synthetic inputs with rapid-release, approved N fertilizers that have little effect on long-term soil health and fertility. The authors seek an alternative approach for synchronizing nutrient availability with tree demand that relies on managing soil biological communities to attain their maximum potential functionality and thus meet tree nutrient demand. This paper outlines a new conceptual framework with which to evaluate a variety of soil functions that are quantified using biological, microbial, and biochemical properties in relation to overall orchard performance. By combining information gathered from soil faunal indices (nematode community structure and diversity analyses) with data obtained by biochemical and microbial analyses of the soil samples, a new, in-depth view of soil communities and their response to management practices will be obtained. As a result, a better understanding of the effects of differing management practices on soil fertility and community structure will be gained. This approach is currently being investigated by our group in organic and integrative sweet cherry orchards. Our goal is to determine which soil parameters may be used to help orchardists optimize soil health while maintaining orchard productivity. Furthermore, we wish to validate a number of assumptions that are commonly made regarding each soil parameter tested across multiple management, soil, and climate types.

Free access

Kate M. Evans, Bruce H. Barritt, Bonnie S. Konishi, Lisa J. Brutcher, and Carolyn F. Ross

Open access

Soon Li Teh, Lisa Brutcher, Bonnie Schonberg, and Kate Evans

Fruit texture is a major target of apple (Malus domestica) breeding programs due to its influence on consumer preference. This multitrait feature is typically rated using sensory assessment, which is subjective and prone to biases. Instrumental measurements have predominantly targeted firmness of the outer region of fruit cortex using industry standard Magness–Taylor-type penetrometers, while other metrics remain largely unused. Additionally, there have been limited reports on correlating sensory attributes with instrumental metrics on many diverse apple selections. This report is the first to correlate multiyear historical fruit texture information of instrumental metrics and sensory assessment in an apple breeding program. Through 11 years of routine fruit quality evaluation at the Washington State University apple breeding program, physical textural data of 84,552 fruit acquired from computerized penetrometers were correlated with sensory assessment. Correlations among various instrumental metrics are high (0.63 ≤ r ≤ 1.00; P < 0.0001). In correlating instrumental outputs with sensory data, there is a significant correlation (r = 0.43; P < 0.0001) between the instrumental crispness value and sensory crispness. Additionally, instrumental hardness traits are significantly correlated (0.61 ≤ r ≤ 0.69; P < 0.0001) with sensory hardness. Outputs from two versions of computerized penetrometers were tested and shown to have no statistical differences. Overall, this report demonstrates potential use of instrumental metrics as firmness and crispness estimates for selecting apples of diverse backgrounds in a breeding program. However, in testing a large number and diversity of fruit, experimenters should perform data curation and account for lower limits/thresholds of the instrument.

Free access

Kate M. Evans, Bruce H. Barritt, Bonnie S. Konishi, Marc A. Dilley, Lisa J. Brutcher, and Cameron P. Peace

Free access

Kate M. Evans, Bruce H. Barritt, Bonnie S. Konishi, Marc A. Dilley, Lisa J. Brutcher, and Cameron P. Peace