Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Lisa Alexander x
Clear All Modify Search
Restricted access

Lisa Alexander

Hydrangea macrophylla (Thunb.) Ser., florist’s or bigleaf hydrangea, is the most economically important member of the Hydrangea genus, which accounted for over $120,000,000 in U.S. nursery sales in 2014. Both diploid and triploid H. macrophylla cultivars exist and there is some evidence that triploidy leads to larger plant and floral structures. The diploid cultivar, H. macrophylla ‘Trophee’, was previously shown to have a bimodal pollen size distribution which may be indicative of unreduced gametes. We used H. macrophylla ‘Trophee’ as a parent in a series of crosses with other diploid H. macrophylla cultivars. The objective of this study was to evaluate reciprocal full-sibling H. macrophylla families for ploidy and phenotype, determine the impact of ploidy on phenotype, and determine the efficacy of unreduced gamete breeding. Diploids and triploids were found in the offspring pool with mean 2C genome sizes of 4.5 and 6.7 pg, respectively. All offspring from crosses with ‘Trophee’ as the female parent were diploid as expected. The full-sibling family with ‘Trophee’ as the male parent contained 94% triploids, supporting the hypothesis that the bimodal pollen size distribution of ‘Trophee’ reflects the presence of unreduced male gametes. Triploids had fewer, wider inflorescences than diploids. The stems of triploids were 16% thicker and their leaves were 20% larger than those of diploid full and half-siblings. Triploids had significantly larger stomata (9.0 μm 2) than diploids (5.9 μm 2). These results establish a link between ploidy and phenotype in plants of similar genetic background and support the efficacy of unreduced gametes in polyploidy breeding.

Open access

Lisa Alexander

Production and use of sweet olive (Osmanthus armatus), fragrant tea olive (O. fragrans), holly tea olive (O. heterophyllus), and fortune’s osmanthus (O. xfortunei) as a landscape plant is currently limited to U.S. Department of Agriculture (USDA) Hardiness Zones 7 to 10, and nursery growers wish to extend the range of these species into colder climates. To provide recommendations to growers and landscapers and inform breeding efforts for cold-hardiness improvement, a replicated trial was conducted in a USDA Hardiness Zone 6b/7a transition zone. Fifteen cultivars and two unnamed accessions representing four species were evaluated for growth, stem necrosis, and flowering in a pot-in-pot production system from 2015 to 2017. One-half of the plants in each cultivar were moved to winter protection each November and returned to the field each May. There were significant differences in growth and cold-hardiness among cultivars. Percent increase in the growth index after three growing seasons for winter-exposed accessions of sweet olive, fortune’s osmanthus, fragrant tea olive, and holly tea olive averaged 867%, 1175%, 155%, and 6361%, respectively. Percent stem necrosis in May 2017 for sweet olive, fortune’s osmanthus, fragrant tea olive, and holly tea olive averaged 1.1%, 2.7%, 44.8%, and 20.2%, respectively. The most cold-tolerant accessions based on stem necrosis and growth index of winter-exposed plants were ‘Kaori Hime’, ‘Hariyama’, ‘Shien’, ‘Head-Lee Fastigate’, and ‘Rotundifulius’ holly tea olive, ‘San Jose’ fortune’s osmanthus, and ‘Longwood’ sweet olive. Of these cultivars, Kaori Hime, San Jose, and Longwood flowered under winter-exposed conditions. All fragrant tea olive cultivars were damaged by winter exposure. ‘Fodingzhu’ was the only fragrant tea olive cultivar that flowered each year under winter-exposed conditions. Evaluation and breeding efforts are continuing to extend the range for production and growth of this genus.

Free access

Sandra M. Reed and Lisa W. Alexander

Restricted access

Lisa W. Alexander, Anthony Witcher and Michael A. Arnold