Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Liqin Li x
Clear All Modify Search
Open access

Youping Sun, Liqin Li, Yuxiang Wang and Xin Dai

Spirea (Spiraea sp.) plants are popular landscape plants in Utah and the Intermountain West United States. Spiraea betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were evaluated for salinity tolerance in a greenhouse experiment. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at an EC of 3.0 or 6.0 dS·m−1 for 8 weeks. At the end of the experiment, all spirea plants survived and retained good visual quality, with average visual scores greater than 4 (0 = dead, 5 = excellent) when irrigated with saline solution at an EC of 3.0 dS·m−1, with the exception of S. thunbergii, which showed slight foliar salt damage and an average visual score of 3.8. When irrigated with saline solution at an EC of 6.0 dS·m−1, all S. thunbergii plants died, S. media exhibited severe foliar salt damage and an average visual score of 1.5, and S. betulifolia, S. japonica, and S. nipponica displayed slight-to-moderate foliar salt damage and average visual scores greater than 3. Regardless of spirea species, shoot dry weight decreased by 20% and 48% when irrigated with saline solution at ECs of 3.0 and 6.0 dS·m−1, respectively, compared with the control. Saline solution at an EC of 3.0 dS·m−1 did not affect net photosynthesis (Pn) of all spirea species except S. nipponica, but saline solution at an EC of 6.0 dS·m−1 decreased the Pn of all species by 36% to 60%. There were 37, 7, 36, 21, and 104 times more sodium (Na+) concentrations in leaf and 29, 28, 28, 13, and 69 times more chloride (Cl) concentrations in leaf than in the control when S. betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were irrigated with saline solution at an EC of 6.0 dS·m−1. Correlation analyses indicated that foliar salt damage and reduced plant growth and photosynthesis were induced mainly by Cl ions accumulated in the spirea leaves. S. thunbergii was the most sensitive species; it had high mortality and low visual quality at both salinity levels. Spiraea japonica, S. nipponica, and S. betulifolia were relatively more tolerant and had good visual quality at elevated salinity compared with S. media and S. thunbergii. These research results are valuable for growers and landscape professionals during plant selection for nursery production using low-quality water and landscapes in salt-prone areas.

Open access

Yuxiang Wang, Liqin Li, Youping Sun and Xin Dai

Spirea (Spiraea sp.) plants are commonly used in landscapes in Utah and the intermountain western United States. The relative salt tolerance of seven japanese spirea (Spiraea japonica) cultivars (Galen, Minspi, NCSX1, NCSX2, SMNSJMFP, Tracy, and Yan) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution with an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions with an EC of 3.0 or 6.0 dS·m−1 once per week for 8 weeks. At 8 weeks after the initiation of treatment, all japanese spirea cultivars irrigated with saline solution with an EC of 3.0 dS·m−1 still exhibited good or excellent visual quality, with all plants having visual scores of 4 or 5 (0 = dead, 1 = severe foliar salt damage, 2 = moderate foliar salt damage, 3 = slight foliar salt damage, 4 = minimal foliar salt damage, 5 = excellent), except for Tracy and Yan, with only 29% and 64%, respectively, of plants with visual scores less than 3. When irrigated with saline solution with an EC of 6.0 dS·m−1, both ‘Tracy’ and ‘Yan’ plants died, and 75% of ‘NCSX2’ plants died. ‘Minspi’ showed severe foliar salt damage, with 32% of plants having a visual score of 1; 25% of plants died. ‘Galen’ and ‘NCSX1’ had slight-to-moderate foliar salt damage, with 25% and 21%, respectively, of plants with visual scores of 2 or less. However, 64% of ‘SMNSJMFP’ plants had good or excellent visual quality, with visual scores more than 4. Saline irrigation water with an EC of 3.0 dS·m−1 decreased the shoot dry weight of ‘Galen’, ‘Minspi’, ‘SMNSJMFP’, and ‘Yan’ by 27%, 22%, 28%, and 35%, respectively, compared with that of the control. All japanese spirea cultivars had 35% to 56% lower shoot dry weight than the control when they were irrigated with saline irrigation water with an EC of 6.0 dS·m−1. The japanese spirea were moderately sensitive to the salinity levels in this experiment. ‘Galen’ and ‘SMNSJMFP’ japanese spirea exhibited less foliar salt damage and reductions in shoot dry weight and were relatively more tolerant to the increased salinity levels tested in this study than the remaining five cultivars (Minspi, NCSX1, NCSX2, Tracy, and Yan).