Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Liping Kou x
Clear All Modify Search

We reported previously that the preharvest treatment of broccoli microgreens with 10 mmol·L−1 calcium chloride (CaCl2) increased the yield and postharvest quality. The objective of this study was to investigate whether other calcium forms have the similar effect, in particular, after postharvest dip in calcium solution. Our results are as follows: 1) Preharvest spray without postharvest dip: Both 20 mmol·L−1 calcium lactate (Ca lactate) and calcium amino acid (Ca AA) chelate significantly improved broccoli microgreens quality and inhibited microbial populations as compared with the water-only control during storage at 5 °C for 21 days. However, they were less effective than 10 mmol·L−1 CaCl2. 2) Postharvest dip without preharvest spray: The microgreens sprayed with water-only control were dipped in 0, 25, 50, or 100 mmol·L−1 Ca lactate solution containing 100 μL·L−1 chlorine immediately after harvest. During storage at 5 °C for 14 days, 50 mmol·L−1 Ca lactate dip showed the highest overall quality and lowest tissue electrolyte leakage. 3) Preharvest spray and postharvest dip: Combined preharvest 10 mmol·L−1 CaCl2 spray and postharvest 50 mmol·L−1 Ca lactate dip resulted in better postharvest quality than individual pre- or postharvest calcium treatments. However, the preharvest 10 mmol·L−1 CaCl2 spray without postharvest dip displayed a best overall visual quality and longest storage life. Our data indicate that pre- and postharvest calcium treatments have positive effect on maintaining the microgreens quality and extending shelf life. However, current postharvest dip/spinning/drying method profoundly reduces the shelf life due to mechanical damages. Technologies to optimize microgreens wash are needed to provide ready-to-eat product. Alternatively, the wash step can be avoided when the microgreens are grown under controlled settings.

Free access

Alternatives to sulfur dioxide to maintain quality of table grapes, including various combinations of rachis removal, chlorinated wash, hot water treatment, and modified atmosphere packaging, were explored in this study. Grapes were prepared by cutting off the rachis 1 to 2 mm from the fruit or by keeping the clusters intact. After initial preparation, short-stem and cluster grapes were subjected to chlorinated wash and/or hot water (45 °C, 8 min) treatment and packaged in plastic trays sealed with a gas-permeable film. The treated grapes as well as the commercially packed grapes (COM) in their original packages were stored at 5 °C for up to 4 weeks. Hot water treatment resulted in significantly (P < 0.05) higher oxygen retention and lower carbon dioxide accumulation in package headspaces, maintained a firmer texture, higher overall visual quality, lower decay rate, and lower microbial populations than other treatments or COM during the entire storage period. Grapes that were cut from the rachis and treated with hot water and chlorine maintained the highest quality for 4 weeks with the least decay among all treatments. A chlorine prewash treatment significantly (P < 0.05) reduced microbial populations on cluster grapes and maintained better overall quality. Conventional COM grapes developed dark decay and lost turgidity and were of unacceptable quality at 28 days of storage.

Free access