Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ling Wu x
Clear All Modify Search

Temporary immersion culture vessels were modified to culture Protea cynaroides L. microshoots on semisolid growth medium. The effects of different ventilation treatments and sucrose concentrations on the vegetative growth and physiological characteristics of P. cynaroides L. microshoots were investigated. Three ventilation treatments were used: microshoots were either ventilated naturally or forced ventilated for 2 minutes/2 hours or 2 minutes/4 hours. In addition, two sucrose concentrations were used in the growth medium: 30 and 10 g·L−1. Significant interaction effects were found between ventilation and sucrose in the number of shoots formed. When cultured on growth medium with 10 g·L−1 sucrose, microshoots force-ventilated for 2 minutes/2 hours produced significantly higher number of shoots than those naturally ventilated or force-ventilated for 2 minutes/4 hours. In the 30 g·L−1 sucrose treatment, no significant differences in shoot numbers were observed among all ventilation treatments. The highest leaf areas were found in microshoots cultured in the 2 minutes/4 hours forced ventilation treatment, which were significantly higher than microshoots in the other ventilation treatments, irrespective of the sucrose concentration. Chlorophyll content was significantly higher in leaves of microshoots that were cultured in 30 g·L−1 sucrose compared with those grown in 10 g·L−1 sucrose in all ventilation treatments. Analysis of chlorophyll fluorescence of the leaves revealed that the F v/F m value of microshoots grown on 30 g·L−1 sucrose and force-ventilated for 2 minutes/4 hours was significantly higher than those naturally ventilated in the same sucrose treatment. Overall, the use of 30 g·L−1 sucrose in combination with 2 minutes/4 hours ventilation provided the best conditions for culturing P. cynaroides microshoots. This study demonstrated that these modified temporary immersion culture vessels can be used as a forced ventilation system to culture P. cynaroides microshoots and promote vegetative growth as well as improve their photosynthetic characteristics. The system described here introduces a simple and novel method of converting commercially available temporary immersion systems into force ventilation systems.

Free access

Thirteen Chinese cabbage (Brassica rapa) hybrid cultivars and 26 parental inbred lines were used as experimental materials to screen for primers producing hybrid and parental complementary bands and for primers with high polymorphism information contents and low genotype frequencies. A total of 18 pairs of core primers were designed to identify the purity of Chinese cabbage. There was no significant difference in the purity percentage measured between different loci of the same strain. The fingerprint obtained by the amplification of each locus could be used to identify purity to obtain an authentic purity percentage. Curve mapping and significance analyses were conducted using the purity percentage of eight different seed samples and confirmed a sampling seed number of 96. The results of the purity test were verified by comparison with the grow-out test (GOT) using molecular markers. In conclusion, the simple sequence repeat (SSR) detection system could be used for the rapid identification of the purity of the tested Chinese cabbage hybrids.

Free access

Molecular markers by random amplified polymorphic DNAs were used to evaluate the genetic variation among different Oncidium accessions. It is possible to distinguish different registered Oncidium hybrids, including Gower Ramsey, Sweet Sugar, and Taka using nine random primers. Furthermore, variation was also detected within different cultivars derived from same hybrids. For example, several cultivars of Gower Ramsey could be distinguished based on molecular markers. Based on dendrogram, the investigated cultivars were clustered into several groups. Onc. Gower Ramsey and its selected cultivars were in one group. Onc. Sweet Sugar, Onc. Taka and Onc. Sharry Baby `Sweet Fragrance' were clustered in separate groups.

Free access

Most strawberry plants have white flowers and red fruit. We developed a new strawberry selection with pink flowers and white fruit, and named it G23. Basic phenotypic data were recorded over years of observation and experimentation with the flower crown diameter, petal color, and rate of fruit set, as well as fruit skin color, flesh color, seed color and attachment status, fruit weight and shape, soluble solids contents, and firmness. We found that G23 bloomed with a stable pink flower and produced white fruit consistently with a relatively high fruit-set rate compared with its female parent, ‘Pink Panda’. G23 displayed high resistance to Fusarium wilt (Fusarium oxysporum) and anthracnose (Colletotrichum spp.). It is also tolerant of high temperatures (up to 40 °C) and long-term drought. The asexual propagation ability of G23 is high, with ∼60 to 100 stolon ramets formed during the summer. In summary, this new pink-flowered and white-fruited strawberry germplasm is suitable for ornamental use, as a result of its remarkable flowering and fruiting characteristics. In addition, it provides opportunities for innovative strawberry germplasm for future breeding.

Open Access