Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Lin Zhou x
Clear All Modify Search

Paeonia delavayi is a species endemic to Southwest China and an important genetic resource for flower color breeding of tree peonies. The mechanisms underlying the flower coloration of this plant have not been fully elucidated. In this article, the petals of yellow-colored individual (Pl) and purple–red-colored individual (Pd) of P. delavayi were studied. And anatomical observations revealed that a large amount of yellow protoplasts and a small amount of colorless protoplasts were located in the yellow-colored Pl petals, whereas a mixture of purple, red, and pink protoplasts were observed in the purple–red-colored Pd petals. The Pl cells were subrotund and flat, whereas the Pd cells were irregularly polygon-shaped and bulging. Chemical analyses were performed, and the results indicated that significant differences occurred between the cell sap pH of the Pl and Pd flowers and large differences occurred in the contents of Fe and Al between Pl and Pd. Cyanidin- and peonidin-based anthocyanins with flavones and flavonols as copigments determined the Pd flower color, whereas chalcone 2 ′G with apigenin 7-O-neohesperidoside and chrysoeriol 7-O-glucoside as copigments determined the yellow color of Pl. Correspondingly, the genes dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were significantly highly expressed in Pd, whereas chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavone synthase (FNS), flavonol synthase (FLS), flavonoid 7-O-glycosyltransferase (7GT), and 2′4′6′4-tetrahydroxychalcone 2′-glucosyltransferase (THC) had high transcript levels in Pl relative to Pd. The results indicate that the color variation of P. delavayi petals may be related to a delicately controlled balance of the aforementioned factors.

Free access

To study the effects of nitrogen (N), phosphorus (P), and potassium (K) fertilizers on the yield of ‘Jianbao’ pumpkin (Cucurbita maxima Duch), we conducted experiments using the “3414” optimal design scheme in Dehua County, Quanzhou, Fujian, China. Overall, three fertilizer factors (N, P, K) were tested with four fertilization levels (level 0, no fertilizer; level 1, 0.5-times the typical fertilizing amount; level 2, typical fertilizer application; level 3, 1.5-times the typical application), with a total of 14 different fertilization treatments. Based on the results of this study, a corresponding fertilization performance model was established to provide a practical basis for ensuring highly efficient cultivation of pumpkin in the field. Our results showed that the experimental data could not be fitted with a ternary quadratic polynomial fertilizer model, but that it could be fitted with a single-variable quadratic fertilizer model. According to the fitted model, pumpkin yield first increased and then decreased with the increasing amount of N, P, and K used. We identified significant regression relationships between ‘Jianbao’ pumpkin yield and the amount of N, P, and K in the fertilizer. Finally, based on the single-variable quadratic fertilizer model, we suggest that the quantities of N, P, and K fertilizer used for growing 1 ha of ‘Jianbao’ pumpkin should be 390.5, 213.8, and 371.3 kg, respectively.

Free access

Low mobility and solubility reduce the availability of traditional phosphorus (P) fertilizer in red acidic soil. Hydroxyapatite (HAP), especially nano-hydroxyapatite (n-HAP), may be more efficient than P fertilizer because of its nanoparticle characteristics. Camellia oleifera (C. oleifera) is an edible oil tree whose productivity is greatly affected by P fertilizer. During this study, we investigated the migration of different particle sizes of HAP (20 nm, 200 nm, and 80 μm) and their effects on the seedling growth of C. oleifera cultivar Huashuo (HS) cuttings. A column experiment showed that the efflux ratio was negatively correlated with particle size in red acidic soil. The leaching results revealed that the contents of total P and available P in the 20-nm treatment were significantly higher than those in the 200-nm and 80-μm treatments in the deep soil (10–15 cm or 15–20 cm), whereas the application of 20-nm n-HAP caused 13.43% wastage of available P. During the container experiments, 200-nm and 20-nm HAP significantly promoted the growth of the seedlings in terms of seedling height, stem diameter, and biomass. The available P contents in the rhizosphere and nonrhizosphere soils were negatively correlated with the HAP particle sizes. In conclusion, the migration of HAP is inversely correlated with particle size, and HAP improves the P bioavailability in red acidic soil. In summary, 200-nm HAP was the best P fertilizer for the seedlings of HS among the three particle sizes. This study offers preliminary results indicating that 200-nm HAP might be a better P fertilizer compared with other two HAP particle sizes for use in future C. oleifera orchards.

Open Access

Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) is a sensitive and widely used technique for gene expression analysis that depends on stability of the reference genes used for data normalization. Tree peony (Paeonia suffruticosa), known as one of the most famous traditional ornamental plants in China, is very popular in both domestic and international markets for its showy and colorful flowers. To date, no systematic studies on reference genes have been performed in tree peony with different flower colors. In this study, we evaluated the expression stability of 12 candidate reference genes in different tissues and five flower developmental stages of tree peony with six different colors by three algorithms: geNorm, NormFinder, and BestKeeper. The results showed that protein phosphatase 2A (PP2A), ubiquitin protein ligase (UPL), and ubiquitin (UBQ) were the most stable genes across all samples. Helicase, alpha-tubulin (TUA), and eukaryotic translation initiation factor 5A (EIF5A) also exhibited high expression stability in different tissues, in samples with different colors, and at different flower developmental stages. According to the geNorm analysis, the combination of two most stable reference genes was optimal for normalization in all tested sample sets in this study. To further validate the suitability of the reference genes identified in this study, the expression patterns of two putative homologs of chalcone synthase gene (PsCHS1) and chalcone isomerase gene (PsCHI1) were studied at different developmental stages of white flowers. The results provide information for transcriptional analyses in future studies of gene expression on tree peony flower development and pigmentation.

Free access

Ten 16-year-old trees were used as test materials to investigate the effect of foliar calcium fertilizer on the sugar content of ‘Feizixiao’ litchi (Litchi chinensis Sonn.) pulp. The experiment began 35 days after anthesis (DAA) in 2020 and 2021, and the treatment was a foliar spray application of 0.3% CaCl2 aqueous solution, whereas the control was a foliar spray application of water. The sugar content, sucrose-metabolizing enzymes, and ATP-dependent phosphofructokinase (PFK) activities in pulp were measured in 2020 and 2021. Transcriptome sequencing (RNA-seq) was performed on RNA samples from treatment and control fruit pulps at 35, 63, and 69 DAA (full mature stage) in 2020, and 10 genes were chosen for confirmation by real-time polymerase chain reaction (PCR) in 2020 and 2021. At full maturity, the soluble sugar content in the calcium-treated group was extremely significantly or significantly higher than that in the control group. After 63 DAA, the net sucrose-metabolizing enzyme activity in the calcium-treated group was significantly higher than that in the control group. Furthermore, at full maturity, the calcium-treated group had significantly higher sucrose synthase cleavage activity and significantly lower PFK activity than the control group. Fifty-four highly expressed genes in the glycolytic pathway (EMP) were screened from transcriptome data, including hexokinase, PFK, and pyruvate kinase genes; 87% of these genes were downregulated in the treatment group compared with the control group at 69 DAA in 2020. The linear regression between RNA-seq and real-time PCR results was significant in 2020 (r = 0.9292) and 2021 (r = 0.8889). When the fruit is fully ripe, calcium treatment increases net sucrose-metabolizing enzyme activity by increasing sucrose synthase cleavage activity, promoting the accumulation of reducing sugars, and it downregulates phosphofructokinase gene expression in EMP, promoting sugar accumulation.

Open Access

To investigate the characteristics of photosynthetic physiological changes in leaves of Mangifera indica L. cv. Guifei under enhanced ultraviolet (UV)-B radiation, natural light-exposed trees were used as controls and 96 kJ·m−2·d−1 enhanced UV-B radiation was artificially simulated in the field. The changes in fruit maturity and quality, the leaf net photosynthetic rate (Pn), photosynthetic pigment contents, photochemical reactions, the activities of photosynthetic enzymes and related gene expression levels were determined. Compared with the control, the percentage of mature fruits under the treatment significantly increased, and fruit quality improved. The net photosynthetic rate (Pn), photosynthetic pigment content, Hill reaction activity, and photochemical quenching coefficient (qP) of the treated leaves showed significantly higher values than those of the control leaves. The activities of Rubisco and Rubisco activating enzyme (RCA) and the expression levels of the Rubisco large subunit and Rubisco small subunit were significantly increased. Treatment with 96 kJ·m−2·d−1 enhanced ultraviolet-B radiation improved Rubisco activity by increasing the expression of the Rubisco large and small subunit genes, thereby enhancing the CO2-fixing capacity and dark reaction capacity of leaves. Thus, the net photosynthetic rate of leaves increased, which promoted the early maturity of ‘Guifei’ mango by the rapid accumulation of photosynthetic products.

Open Access

The method of returning banana (Musa nana) pseudostems to the field can effectively maintain and improve the level of organic matter in the soil. In this article, we show that a small vertical-type banana pseudostem chopper can be used in banana plantations that do not need to be replanted. The aim of this study was to investigate the relationship among the blade type, cutting force, and cutting power. The effects of the blade roll angles, pitch angles, and feeding angles on the crushing qualification rate and crushing efficiency were obtained by comparing the decomposition characteristics of a banana pseudostem before and after crushing. The results showed that the arc-shaped blade exhibited the smallest cutting force and cutting power consumption. The maximum crush qualification rate and crush efficiency were obtained when the roll angle was 12°, the pitch angle was −5°, and the feeding angle was 5°. The weight reduction rate and average decomposition rate of the crushed pseudostem were 2.73 and 3.61 times greater than those of natural decomposition, respectively. The results can be used as a reference for the design and optimization of banana pseudostem choppers.

Open Access