Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lijie Qin x
Clear All Modify Search

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.

Free access

Magnolia (Magnoliaceae) is widely cultivated for its beauty; however, despite this, the components of the different flower colors in Magnolia have not been elucidated. In this study, the color parameters of 10 Magnolia petals with different colors were measured by the Royal Horticultural Society Color Chart (RHSCC) and a color reader CR-10. The composition and content of the flavonoids in the petals were analyzed by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) as well as HPLC with electrospray ionization and mass spectrometry (HPLC-ESI-MS2). All results showed that the 10 petals were divided into four color groups. Regarding the flavonoid composition, four types of anthocyanins, including Cyanidin-glucosyl-rhamnoside (Cy-GR), Cyanidin-glucosyl-rhamnosyl-glucoside (Cy-GRG), Peonidin-glucosyl-rhamnoside (Pn-GR), and Peonidin-glucosyl-rhamnosyl-glucoside (Pn-GRG), were identified, as well as 10 types of flavonols. The flavonols included isorhamnetin, quercetin, kaempferol, and their glycosides, which included rutinoside, rhamnose, and glucoside. Cyanidin and peonidin make Magnolia petals appear red-purple and purple, respectively, and the flavonols perform as evident auxiliary pigments, particularly quercetin. The Magnolia cultivar flower phenotypes sampled in this study differed by changes in their existing flavonoid content rather than by the appearance of new flavonoids. Consequently, this study provides a reference for further revealing the basis of Magnolia flower color and provides clues for color breeding.

Free access