Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lidia M. Carrera x
Clear All Modify Search

Cover crops combined with conservation tillage practices can minimize chemical inputs and improve soil quality, soil water-holding capacity, weed suppression and crop yields. No-tillage production of sweet corn (Zea mays var. `Silver Queen') was studied for 2 years at the USDA Beltsville Agricultural Research Center, Md., to determine cover crop management practices that maximize yield and suppress weeds. Cover crop treatments were hairy vetch (Vicia villosa Roth), rye (Secale cereale L.) and hairy vetch mixture, and bare soil (no cover crop). There were three cover crop killing methods: mowing, rolling or contact herbicide paraquat. All plots were treated with or without atrazine and metolachlor after planting. There was a 23% reduction in sweet corn plant population in the rye-hairy vetch mixture compared to bare soil. Averaged over both years, sweet corn yield in hairy vetch treatments was 43% greater than in bare soil, whereas yield in the rye-hairy vetch mixture was 30% greater than in bare soil. There were no significant main effects of kill method or significant interactions between kill method and cover crop on yield. Sweet corn yields were not different for hairy vetch or rye-hairy vetch treatments with or without atrazine and metolachlor. However, yield in bare soil without the herbicides atrazine and metolachor were reduced by 63% compared to bare soil with these herbicides. When no atrazine and metolachlor were applied, weed biomass was reduced in cover crops compared to the bare soil. Regression analysis showed greater yield loss per unit of weed biomass for bare soil than for the vetch or rye-hairy vetch mixture. This analysis suggests that cover crops increased sweet corn yield in the absence of atrazine and metolachlor not only by reducing weed biomass, but also by increasing the competitiveness of corn to weeds at any given biomass.

Free access

The mineral concentration of bearing `Mejhool' date palm (Phoenix dactylifera L.) trees was investigated with the objective of identifying the cause of browning and dieback of distal parts of the fruit-bearing strands. Tissue analyses of leaves, fruits, healthy and dead portions of fruit-bearing strands indicated that tissue browning and dieback appeared to be associated with a high concentration of certain mineral elements. A comparison of mineral concentration between healthy and dead tissue of the fruit-bearing strands showed no significant increase in K, Cu, B, Zn, and Na, but very high increases in the concentrations of P, Ca, Mg, S, Mn, and Fe. The levels of P, Ca, Mg, S, Mn, and Fe in the distal part of the fruit-bearing strand over a 3-year average were 5, 18, 12, 3, 11, and 2 times, respectively, higher than those in the healthy, proximal part of the strand. Mineral concentrations of leaves and mature fruits were determined for comparison with those in fruit-bearing strands.

Free access