Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Liang Cheng x
Clear All Modify Search

The accumulation of 1-aminocyclopropane-1-carboxylate (ACC), which is a precursor for ethylene production, in plant roots exposed to salinity stress can be detrimental to plant growth. The objectives of this study were to determine whether inoculating roots with bacteria containing deaminase enzymes that break down ACC (ACC-deaminase) could improve plant tolerance to salinity in perennial ryegrass (Lolium perenne) and to examine growth and physiological factors, as well as nutrition status of plants affected by the ACC-deaminase bacteria inoculation under salinity stress. Plants of perennial ryegrass (cv. Pangea) were inoculated with either Burkholderia phytofirmans PsJN or Burkholderia gladioli RU1 and irrigated with either fresh water (control) or a 250 mm NaCl solution to induce salinity stress. The bacterium-inoculated plants had less ACC content in shoots and roots under both nonstressed and salinity conditions. Salinity stress inhibited root and shoot growth, but the bacterium-inoculated plants exhibited higher visual turf quality (TQ), tiller number, root biomass, shoot biomass, leaf water content, and photochemical efficiency, as well as lower cellular electrolyte leakage (EL) under salinity stress. Plants inoculated with bacteria had lower sodium content and higher potassium to sodium ratios in shoots under salinity stress. Shoot and root nitrogen content and shoot potassium content increased, whereas shoot and root calcium, magnesium, iron, and aluminum content all decreased due to bacterial inoculation under salinity treatment. ACC-deaminase bacteria inoculation of roots was effective in improving salinity tolerance of perennial ryegrass and could be incorporated into turfgrass maintenance programs in salt-affected soils.

Free access

Chinese cymbidiums (Cymbidium sp.) are important ornamental plants because of their foliage, flower shape, and fragrance. Well-known Chinese cymbidiums mainly include Cymbidium goeringii, Cymbidium faberi, Cymbidium ensifolium, Cymbidium kanran, and Cymbidium sinense. The population genetics of Chinese cymbidiums can be efficiently analyzed using small-scale marker panels with high discriminatory power. In this study, we tested several genic simple sequence repeats (SSRs) and built six genic SSR panels. The panels included several robust markers, which can rapidly assign Chinese cymbidium accessions to their source species. Fifty-three accessions of Chinese cymbidiums were analyzed using 25 markers, which exhibited polymorphism among five species. These markers were ranked according to their discriminatory scores (D scores). The program selected six markers to build an “overall” panel for all Cymbidium classifications and yielded 95.16% population assignment accuracy. Considering one species as the “critical” population and the four other species as one population, we built five genic SSR panels: C. ensifolium panel (four markers, 98.05% accuracy), C. faberi panel (six markers, 95.90% accuracy), C. goeringii panel (six markers, 95.15% accuracy), C. sinense panel (six markers, 96.35% accuracy), and C. kanran panel (five markers, 96.10% accuracy). Genetic distance matrices calculated using the “overall” panels and those derived with the 25 markers were compared. Results showed a high correlation (R = 0.807) with statistical significance (P = 0.042). Moreover, “all panels” revealed higher genetic variations among populations than “all markers.” Hence, the developed panels are suitable for efficient population classification of Chinese cymbidiums.

Free access

The application of diffuse light can potentially improve the homogeneity of light distribution and other microclimatic factors such as temperature inside greenhouses. In this study, diffuse light plastic films with different degrees of light diffuseness (20% and 29%) were used as the south roof cover of Chinese solar greenhouses to investigate the spatial distribution of microclimatic factors and their impacts on the growth and yield of tomato. The horizontal and vertical photosynthetic photon flux density (PPFD) distributions, air temperature distribution, and leaf temperature distribution inside the canopy, tomato leaf net photosynthesis (Pn), and fruit production during the growth period were determined. The results showed that diffuse light plastic film continuously improved the light distribution in the vertical and horizontal spaces of the crop canopy in terms of light interception and uniformity. A more diffuse light fraction also decreased the air and leaf temperatures of the middle canopy and upper canopy during the summer, thereby promoting the photosynthesis of the tomato plants. Pn of the middle and lower canopies with higher haze film were significantly greater than those with lower haze film (19.0% and 27.2%, respectively). The yields of higher stem density and lower stem density planted tomatoes in the 29% haze compartment were increased by 5.5% and 12.9% compared with 20% in the haze group, respectively. Diffuse light plastic films can improve the homogeneity of the canopy light distribution and increase crop production in Chinese solar greenhouses.

Open Access

In ‘Beijing 24’ peach [Prunus persica (L.) Batch] trees, a series of source leaves with differing levels of end products were created by retaining fruit (“+fruit”), removing fruit (“−fruit”), or reducing the light period. To alter the light period, leaves were covered with a bag made of brown inner paper and outer silver paper, which was then removed at different times the next day. The highest level of end products were obtained by fruit removal, while reducing the light period resulted in a lower level than “+fruit.” Net photosynthetic rate (Pn) and stomatal conductance (g s) decreased, but leaf temperatures (Tleaf) increased, following an increase in end product levels in leaves. After the “−fruit” treatment, reduced Pn was correlated with lower g s, and Tleaf increase was concomitant with decreases in maximal quantum yield of photosystem II (Fv/Fm), actual photochemical efficiency of photosystem II (ΦPSII), and photochemical quenching, and with an increase in nonphotochemical quenching. However, there were no significant differences in chlorophyll fluorescence between “+fruit” and the two treatments reducing the light period. The ΦPSII decreased following an increase in foliar sorbitol level, and it linearly decreased as sucrose and starch increased. Although fruit removal resulted in a significant accumulation of sucrose, sorbitol, and starch in leaves throughout the day, the extractable activities of several important enzymes involved in carbohydrate leaf storage and translocation did not decrease. Therefore, instead of feedback regulation by the accumulation of end products in source leaves, a high Tleaf induced by decreased stomatal aperture may play a key role in regulation of photosynthesis by limiting the photochemical efficiency of the PSII reaction centers under high levels of the end products in peach leaves.

Free access

Albino tea plants are mutants that grow albino young leaves owing to lack of chlorophylls under certain environmental conditions. There are two types of albino tea plants grown in production, i.e., light- and temperature-sensitive albino tea cultivars. The former grows albino leaves in yellow color under intensive sunlight conditions and the later grows albino leaves with white mesophyll and greenish vein as the environmental temperature is below 20 °C. Both albino teas attract great attention because of their high levels of amino acids and the “umami” taste. There have been many studies focusing on the temperature-sensitive albino tea plants, whereas little attention has been given to the light-sensitive albino tea cultivars. The characteristics of the albino tea cultivars and the mechanism underlying them were reviewed in the present article based on the published literatures, including chemical compositions, morphological characteristics, and molecular genetic mechanism.

Free access