Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Li-Juan Zhang x
Clear All Modify Search

Soil water deficit impacts cold acclimation and freezing tolerance in creeping bentgrass (Agrostis stolonifera L.), but the mechanisms underlying have not been well understood. The objectives of this study were to investigate the effects of deficit irrigation before and during cold acclimation on osmoprotectants, antioxidant metabolism, and freezing tolerance in creeping bentgrass. The grass was subjected to three-soil moisture levels: well-watered [100% container capacity (CC)], deficit irrigation induced-mild drought stress (60% CC), and severe drought stress (30% CC) for 35 days including 14 days at 24/20 °C (day/night) and then 21 days under cold acclimation treatment (2 °C) in growth chambers. Leaf proline and total soluble sugar (TSS) levels were higher in the grass under mild drought stress relative to that under severe drought stress. Superoxide (O2 −·), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content were higher in the grass under severe drought relative to that under well-watered and mild drought stress at day 35. Mild drought stress increased catalase (CAT) and guaiacol peroxidase (POD) activity, induced new isoforms and increased band intensities of superoxide dismutase (SOD), CAT, and POD during cold acclimation (days 14 to 35). No differences in osmoprotectants, antioxidant metabolism, and freezing tolerance were found between mild drought and well-watered treatments. The results of this study suggest deficit irrigation-induced mild drought stress in late fall and winter could induce accumulation of osmoprotectants and improve antioxidant metabolism, and freezing tolerance, but severe drought stress could reduce freezing tolerance of creeping bentgrass in the region with limited precipitation.

Free access

Tree peony cultivars are usually classified according to flower characteristics (flower form and flower color) which are commonly affected by environmental influences and developmental levels. Judgment of flower forms may also depend on the observer. Precise and rapid cultivar identification methods are also required to manage cultivar collections as well as tree peony breeding programs. The objective of this paper is to analyze the discriminatory ability of leaf morphology and Intersimple sequence repeat (ISSR) marker systems for tree peony cultivars. As a result, although there exist large variations of leaf morphology of tree peony cultivars, the morphological characteristics of biternately compound leaves 3, 4, and 5 from the base of a shoot at the middle part of a plant are relatively stable with smaller variations within cultivars (2.7% to 27.1%, 16.8% on average) and with larger differentiations among cultivars (72.9% to 97.3%, 83.2% on average). Statistical and principal components analyses indicate that 12 leaf morphological characteristics are valuable for cultivar classification. ISSR markers present a precisely discriminatory power in tree peony cultivar classification without environmental influences. The cultivars with multiple flower forms, which makes it difficult to make judgment by means of a flower-form-based classification system, have been significantly characterized using leaf morphology or ISSR markers.

Free access

To investigate the influence of ultraviolet-C (UVC) radiation pretreatment on the sugar metabolism of yellow peaches (cv. Beinong2 × 60–24–7) during storage, the concentrations of soluble sugar (sucrose, fructose, glucose, and sorbitol), and related gene expression were determined. During UVC pretreatment, peaches were subjected to a dose of 4 kJ·m−2 when they were placed at 15 cm under a UVC lamp tube for 10 minutes at 25 °C. Then, they remained at 15 ± 2 °C for 10 days. Peaches stored at 15 ± 2 °C immediately after picking were used as the control group (CG). UVC pretreatment reduced the ethylene production rate and resulted in a significant increase in the accumulation of sucrose during days 2 to 8 of the storage period, followed by a lower concentration of fructose and glucose and the upregulation of PpaSS1. The expression levels of PpaSPS2, PpaSS1, and PpaST3 were significantly correlated with fructose concentration, and those of PpaSPS2 and PpaST2 were significantly correlated with glucose concentration. The enzyme activity of sucrose phosphate synthase (SPS) was positively correlated with PpaSPS2, PpaSS2, and PpaST2. The enzyme activities of sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) were positively correlated with PpaSS1, PpaST1, and Ppani, respectively. Expressions of PpSPS1 and PpSPS2 in UVC-pretreated peaches were upregulated on storage days 8 and 2, and there was a UVC-induced peak in SPS activity on storage days 4 and 8, which resulted in the rapid accumulation of sucrose. UVC pretreatment could upregulate the gene expression of PpaSS1 on day 2, which could improve and maintain the quality of peaches for consumption.

Open Access

Cytosine methylation plays important roles in regulating gene expression and modulating agronomic traits. In this study, the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique was used to study variation in cytosine methylation among seven pecan (Carya illinoinensis) cultivars at four developmental stages. In addition, phenotypic variations in the leaves of these seven cultivars were investigated. Using eight primer sets, 22,796 bands and 950 sites were detected in the pecan cultivars at four stages. Variation in cytosine methylation was observed among the pecan cultivars, with total methylation levels ranging from 51.18% to 56.58% and polymorphism rates of 82.29%, 81.73%, 78.64%, and 79.09% being recorded at the four stages. Sufficiently accompanying the polymorphism data, significant differences in phenotypic traits were also observed among the pecan cultivars, suggesting that cytosine methylation may be an important factor underlying phenotypic variation. Hypermethylation was the dominant type of methylation among the four types observed, and full methylation occurred at higher levels than did hemimethylation in the pecan genomes. Cluster analysis and principal coordinate analysis (PCoA) identified Dice coefficients ranging from 0.698 to 0.778, with an average coefficient of 0.735, and the variance contribution rates of the previous three principal coordinates were 19.6%, 19.0%, and 18.2%, respectively. Among the seven pecan cultivars, four groups were clearly classified based on a Dice coefficient of 0.75 and the previous three principal coordinates. Tracing dynamic changes in methylation status across stages revealed that methylation patterns changed at a larger proportion of CCGG sites from the 30% of final fruit-size (30%-FFS) stage to the 70%-FFS stage, with general decreases in the total methylation level, the rate of polymorphism, and specific sites being observed in each cultivar. These results demonstrated that the F-MSAP technique is a powerful tool for quantitatively detecting cytosine methylation in pecan genomes and provide a new perspective for studying many important life processes in pecan.

Free access