Search Results

You are looking at 1 - 10 of 47 items for

  • Author or Editor: Li Zhao x
Clear All Modify Search

Tall fescue [Schedonorus arundinaceus (Schreb) Dumort] has potential in cool arid regions, where it is often subject to salinity stress. The objective of this 2-year field study was to investigate the effect of nitrogen sources on tall fescue turf quality under salinity stress in the northern Great Plains of North America. ‘Wolfpack’, ‘Wolfpack II’, ‘Tar Heel’, ‘Tar Heel II’, ‘Jaguar 3’, ‘Jaguar 4G’, and ‘Arid 3’ were treated with NaCl and CaCl2 in equal amounts. Six N sources were used for fertilization: nitrate-N, urea-N, ammonium-N, urea-N/ammonium-N/nitrate-N, urea-N with urase and nitrification inhibitor, and organic N. Salt treatment reduced turf quality of all cultivars. Turf quality was affected differently by N source. Regardless of salt treatments, urea stabilized with a urease inhibitor and a nitrification inhibitor consistently had the best turf quality. Equal amounts of nitrate, ammonium, and urea-N yielded the lowest turf quality. However, there was no interaction between N source and salt treatment. These results were also supported by green density (GD), dark-green color index (DGCI), shoot chlorophyll (Chl) content, and leaf relative water content (RWC). Tall fescue cultivars responded to salinity treatment differently, with ‘Wolfpack II’ being the cultivar ranked consistently at the top and maintained above the acceptable level of visual quality.

Free access

Large natural genetic diversifications have occurred among Chinese tree peony cultivars under the natural and artificial selections on the flower for ornamental and medicinal uses in the past over 1500 years in China. Paeonia suffruticosa ‘Zi Mei You Chun’ X.Q. Zhao & J.P. Zhao & X.Z. Zhao & X.C. Zhao & Q.X. Gao & Z.Q. Zhao & J.X. Zhao & Z.L. Suo (Paeoniaceae) is a unique cultivar possessing side flowers and bicolored floral disc belonging to the Central Plains tree peony cultivar group of China. This natural mutant is not only an outstanding ornamental, but also a valuable material for scientific research on evolution of tree peony cultivars, metabolic pathways of pigments in the floral disc, origin of floral disc in Paeoniaceae, and other issues in plant evolutionary and developmental genetics.

Free access

The economic downturns of 2007–09 and the COVID-19 pandemic affected most industries in the United States, including landscape services and equipment sales, and provoked both short-term disruptions and long-term changes. To understand how the landscaping industry has responded, we investigated patterns of consumer expenditures on landscape services and equipment from 2009 through 2021 using a representative sample of 76,895 US households. We categorized US households as detached single-family residents and townhouse residents to more fully articulate the factors that turned potential consumers into purchasers and the factors that affected purchasers’ expenditures. We used a double-hurdle model to identify key factors that drive consumer demand for landscape services and equipment over time, including social-demographics, geographic characteristics, housing conditions, year and seasonal trends, and the COVID-19 pandemic. We found that during the studied period, the demand for landscape services declined in terms of both the percentage of consumers purchasing the services and the purchasers’ average expenditures, while the demand for do-it-yourself (DIY) equipment remained relatively unchanged. In response to the COVID-19 pandemic, the percentage of consumers who purchased landscape services increased, while the expenditures on landscape services decreased in 2020 and then began to rebound in 2021, but not enough to reverse the overall downward trend. In contrast, purchases of DIY equipment were relatively stable in response to the COVID-19 pandemic and mainly relied on current consumers.

Open Access
Authors: , , and

In this study, in vitro induction of tetraploid Lychnis senno Siebold et Zucc. and its cytological and morphological characterization were conducted. For polyploid induction, nodal segments with axillary buds from in vitro grown plants were kept for 3 days in MS (Murashige and Skoog, 1962) liquid or solid media added with a series of concentrations of colchicine. Out of total 588 recovered plants, 15 tetraploids and 6 mixoploids determined by flow cytometry analysis were obtained. The tetraploid contained 48 chromosomes, twice the normal diploid number of 24, as observed under light microscope. The tetraploid plants exhibited much larger but less stomata than diploid plants. Moreover, significant differences in stem height and leaf size between the diploid and tetraploid plants were noted. The tetraploid plants were more compact than diploids.

Free access

Half or whole root systems of micropropagated `Gala' apple (Malus ×domestica Borkh.) plants were subjected to drought stress by regulating the osmotic potential of the nutrient solution using polyethylene glycol (20% w/v) to investigate the effect of root drying on NO3- content and metabolism in roots and leaves and on leaf photosynthesis. No significant difference in predawn leaf water potential was found between half root stress (HRS) and control (CK), while predawn leaf water potential from both was significantly higher than for the whole root stress (WRS) treatment. However, diurnal leaf water potential of HRS was lower than CK and higher than WRS during most of the daytime. Neither HRS nor WRS influenced foliar NO3- concentration, but both significantly reduced NO3- concentration in drought-stressed roots as early as 4 hours after stress treatment started. This reduced NO3- concentration was maintained in HRS and WRS roots to the end of the experiment. However, there were no significant differences in NO3- concerntation between CK roots and unstressed roots of HRS. Similar to the effect on root NO3- concentration, both HRS and WRS reduced nitrate reductase activity in drought-stressed roots. Moreover, leaf net photosynthesis, stomatal conductance and transpiration rate of HRS plants were reduced significantly throughout the experiment when compared with CK plants, but the values were higher than those of WRS plants in the first 7 days of stress treatment though not at later times. Net photosynthesis, stomatal conductance and transpiration rate were correlated to root NO3- concentration. This correlation may simply reflect the fact that water stress affected both NO3- concentration in roots and leaf gas exchange in the same direction.

Free access

Momordica grosvenori plantlets were cultured in vitro for 26 d on sucrose- and hormone-free Murashige and Skoog (MS) medium with four levels of photosynthetic photon flux density (PPFD), namely 25, 50, 100, or 200 μmol·m−2·s−1, and a CO2 concentration of 1000 μmol·mol−1 in the culture room [i.e., photoautotrophic micropropagation (PA) treatments]. The control treatment was a photomixotrophic culture using MS medium containing sucrose and NAA with a CO2 concentration of 400 μmol·mol−1 in the culture room and a PPFD of 25 μmol·m−2·s−1. Based on the results, a second experiment was conducted to investigate the effects of α-naphthaleneacetic acid (NAA) and sucrose on callus formation. For this, plantlets were grown in the absence and presence of either NAA or sucrose. Compared with the control, the PA plantlet had a well-developed rooting system, better shoot, greater chlorophyll content, and higher electron transport rate and the ex vitro survival percentage was increased by 31%. Both sucrose and NAA stimulated callus formation on the shoot bases of control plantlets, whereas calluses did not form on the plantlets grown in sucrose- and hormone-free medium. The stronger light intensities increased the fresh and dry weight of plantlets. A PPFD of 100 μmol·m−2·s−1 was more suitable for the growth of M. grosvenori plantlets. Therefore, photoautotrophic plantlets grown at high light intensities would be better suited to the intense irradiance found in sunlight.

Free access

Sunn hemp (Crotalaria juncea L.), as a summer leguminous cover crop, is often grown before fall planting of strawberries (Fragaria ×ananassa Duch.) in Florida. Although sunn hemp has been suggested as a green manure for supplying nitrogen (N) to subsequent crops, limited information is available regarding the contribution of sunn hemp biomass to soil N availability in Florida sandy soils with low levels of organic matter. This is especially true for organic strawberry production where nutrient management remains one of the major yield-limiting factors. This study was conducted in Citra, FL, and assessed the dynamics of N availability after soil incorporation of sunn hemp in organic strawberry production systems established on sandy soils in a subtropical environment. Sunn hemp was planted at a seeding rate of 44.9 kg·ha−1 on 19 July 2017 and 24 July 2018 and terminated 65 days after seeding; a summer weedy fallow was used as the control. Containerized strawberry seedlings of Sweet Sensation® ‘Florida127’ were transplanted on 13 Oct. 2017 (22 days after sunn hemp incorporation) and 4 Oct. 2018 (8 days after sunn hemp incorporation). Immediately after sunn hemp incorporation, anion exchange membranes (AEMs) were buried in the soil to monitor soil NO3-N fluxes, together with traditional soil testing to measure extractable soil NO3-N concentrations. In the 2018 season, soils incorporated with sunn hemp residues were also incubated in the laboratory at 24 °C over 8 weeks to determine the N release pattern by quantifying soil NO3-N and NH4-N. Overall, nitrate fluxes monitored by AEMs in the first 3 weeks after sunn hemp incorporation were significantly higher in the sunn hemp treatment than in the weedy fallow control (by 66% to 185%) in both years. Sunn hemp incorporation also led to a considerable increase in extractable soil NO3-N concentration (by 20% to 94%). The early and fast release of plant available N (PAN) from sunn hemp residues was confirmed by the 8-week laboratory incubation study, which demonstrated that the net N mineralization rate of sunn hemp remained highest over the first 2 weeks of the incubation period. Sunn hemp showed a positive impact on organic strawberry early-season fruit yield in both years, with significant increases in marketable (by 59%) and total (by 52%) fruit weight yields and marketable fruit number (by 46%) in 2017 and total fruit number (by 15%) and weight yield (by 14%) and marketable fruit number (by 13%) in 2018. Given the typical waiting period between sunn hemp residue soil incorporation and strawberry planting as well as the lag in nutrient uptake shortly after transplanting, a large fraction of N released from sunn hemp residues is likely not taken up by strawberry plants. Our findings highlight the challenges of using sunn hemp residues to improve N availability for meeting crop demand and enhance fruit yield in organic strawberry production while minimizing environmental N losses in Florida sandy soils.

Open Access

Walnut, a woody plant, is regarded as having difficulty rooting when propagated by vegetative methods, such as cutting and layering. A layering experiment was conducted in 2018 and 2022. In 2018, some Juglans species, including J. regia L. seedling (JR), J. regia cv. Liaoning 1 (JR LN1), J. hopeinesis Hu seedling (JH), J. mandshurica Maxim seedling (JM), and J. nigra L. seedling (JN), were the mother plants. The specific research hypotheses were that own-rooted walnut propagule could be obtained through layering. the rooting capacity of different Juglans species would be different, and the rooting ability of JN would be the highest among the samplings. The results indicated that all of these species in the experiment could be rooted by etiolation and indole-3-butyric acid (IBA) treatment and that root occurrence was found 6 to 7 weeks after IBA treatment. The layers (shoots from the mother plant) on the seedlings of JR, JH, and JM obtained rooting percentages (RP) of 75.55%, 84.45%, and 86.67%, respectively, and root numbers (RNs) of 21.8, 42.8, and 38.8, respectively, after 20 days of etiolation and 1% IBA treatment. JR LN1 had difficulty rooting in equal conditions and had a RP of 31.11%. In 2022, JR LN1 was the only mother plant and the IBA concentration was increased to obtain satisfactory RP and RN. With the 4% and 8% IBA treatments, RPs of 88.9% and 93.3% and RNs of 40.3 and 27.7, respectively, were achieved. During the experiment, the RP, RN, root length (RL), and root diameter (RD), as well as the layer height (LH) and layer diameter (LD), were investigated and evaluated. Layers with low vigor were more likely to root, as shown by a nonparametric test conducted for the height and diameter of the layers of the rooting and nonrooting groups. A significantly negative correlation (r = −0.548) was observed between RN and LH. Moreover, the quality of the best results of JR LN1 layering propagule and that with ‘liaoning 1’ 1-year-old seedling were compared. Our results provide more support for the possibility of vegetative propagation of walnut by layering and more information regarding the clonal cultivation of walnut trees and the own-rooted seedling establishment of walnut cultivars.

Open Access

Lobularia maritima (L.) Desv. is an important ornamental plant. We investigated an efficient method to induce tetraploid plants of L. maritima (L.) Desv. by treating germinating seeds and apical growing points of seedlings with a range of concentrations of colchicine for different periods of time. Examination of the ploidy level by counting chromosome numbers at metaphase confirmed that the chromosome number of diploid plants was 2n = 2x = 24, whereas 2n = 4x = 48 was observed in tetraploid plants. The morphological characteristics of the diploid and colchicine-induced tetraploid plants were compared. Increases in the size of leaves, flowers, and stomata were observed in the tetraploid plants compared with the diploids. However, the stomatal density and plant height of the tetraploid plants were lower than for the diploid plants. This study presents the first report of autotetraploid plants of L. maritima (L.) Desv., and of the successful generation of tetraploid plants with improved ornamental traits by colchicine treatment.

Free access