Search Results
Tall fescue [Schedonorus arundinaceus (Schreb) Dumort] has potential in cool arid regions, where it is often subject to salinity stress. The objective of this 2-year field study was to investigate the effect of nitrogen sources on tall fescue turf quality under salinity stress in the northern Great Plains of North America. ‘Wolfpack’, ‘Wolfpack II’, ‘Tar Heel’, ‘Tar Heel II’, ‘Jaguar 3’, ‘Jaguar 4G’, and ‘Arid 3’ were treated with NaCl and CaCl2 in equal amounts. Six N sources were used for fertilization: nitrate-N, urea-N, ammonium-N, urea-N/ammonium-N/nitrate-N, urea-N with urase and nitrification inhibitor, and organic N. Salt treatment reduced turf quality of all cultivars. Turf quality was affected differently by N source. Regardless of salt treatments, urea stabilized with a urease inhibitor and a nitrification inhibitor consistently had the best turf quality. Equal amounts of nitrate, ammonium, and urea-N yielded the lowest turf quality. However, there was no interaction between N source and salt treatment. These results were also supported by green density (GD), dark-green color index (DGCI), shoot chlorophyll (Chl) content, and leaf relative water content (RWC). Tall fescue cultivars responded to salinity treatment differently, with ‘Wolfpack II’ being the cultivar ranked consistently at the top and maintained above the acceptable level of visual quality.
Landrace tea populations are important recourses for germplasm conservation and selection of elite tea clone cultivars. To understand their genetic diversity and use them effectively for breeding, two traditional landrace tea populations, Beichuan Taizicha (BCTZ) and Nanjiang Dayecha (NJDY), localized to northern Sichuan, were evaluated for morphological characters, simple sequence repeat (SSR)–based DNA markers and the contents of biochemical components. A wide range of morphological variation and a moderately high level of DNA polymorphism were observed from both BCTZ and NJDY. NJDY had on average, bigger leaves, larger flowers, higher total catechins (TCs), and greater gene diversity (GD) than BCTZ. Interestingly, samples from BCTZ had a wide range in the ratio of galloylated catechins to nongalloylated catechins (G/NG) (1.83–8.12, cv = 48.8%), whereas samples from NJDY were more variable in total amino acid (TAA) content (25.3–50.8 mg·g−1 dry weight) than those from BCTZ. We concluded that the two Camellia sinensis landrace populations are of great interest for both individual selection breeding and scientific studies.
The present study aims to reveal the karyotypic characteristics and genetic relationships of apricot (Prunus armeniaca L.) accessions from different ecological groups. Fourteen, 9, and 30 accessions from the Central Asian ecological group, North China ecological group, and Dzhungar-Ili ecological group, respectively, were analyzed according to the conventional pressing plate method. The results showed that all the apricot accessions from the different ecological groups were diploid (2n = 2x = 16). The total haploid length of the chromosome set of the selected accessions ranged from 8.11 to 12.75 μm, which was a small chromosome, and no satellite chromosomes were detected. All accessions had different numbers of median-centromere chromosomes or sub-median-centromere chromosomes. The karyotypes of the selected accessions were classified as 1A or 2A. Principal component analysis revealed that the long-arm/short-arm ratio (0.968) and the karyotype symmetry index (−0.979) were the most valuable parameters, and cluster analysis revealed that the accessions from the Central Asian ecological group and Dzhungar-Ili ecological group clustered together. In terms of karyotypic characteristics, the accessions from the Dzhungar-Ili ecological group and Central Asian ecological group were closely related.
The flowers of Camellia chrysantha, commonly named as golden camellia, are treasured for their unique yellow color and are popularly used for tea. Compared with common camellia flowers that are either red, purple, pink, or white, golden camellia flowers are rare and are in high market demand. Our study was aimed to induce flowering in juvenile C. chrysantha grafted plants with urea and paclobutrazol (PBZ), a growth retardant. Generally, it takes 6–8 years for C. chrysantha seedlings and 5–6 years for grafted plants to set flower buds. With a 4 × 4 factorial design, four dosages of urea (1, 3, 5, or 8 g/plant) and four concentrations of PBZ (50, 150, 350, and 750 ppm) were tested on 4-year-old C. chrysantha grafted plants. Significant interaction between urea and PBZ was observed, and nine of the 16 combinations produced significantly more flower buds than the control, although not all flower buds could open because of abscission. High concentrations of PBZ and high dosages of urea were generally associated with severe defoliation and slow growth of basal stem diameter. When taking bud abscission into account, combinations of 150 ppm PBZ with 1 g urea and 350 ppm PBZ with 3 g urea resulted in significant flowering in juvenile C. chrysantha grafted plants without negative effects on vegetative growth and flower bud size and severe defoliation. This is the first report on flowering induction in a golden camellia species using juvenile plants. Our results suggest that application of optimized PBZ and urea doses can be a potential means for manipulation of early flowering in golden camellia species.
Camellia flowers are highly prized for their beauty worldwide and are strongly symbolic in many cultures. A new interspecific hybrid cultivar, Camellia ‘Maozi’, generated by crossing Camellia pubipetala with C. japonica ‘Dahong Mudan’, exhibits strong hybrid vigor and has small flowers with a rare light tone of purple. In southwest China with a subtropical monsoon climate, young Camellia ‘Maozi’ trees flush shoots three times in spring, summer, and autumn, with an average annual growth of 12.9 cm. Adult trees flush once a year. Floral bud formation occurs in late April and early May. Camellia ‘Maozi’ flowers are sterile with no fruits and seeds produced. While an individual flower wilts 4–8 days after opening, the blossom can last 1–3 months. Frost damage can be found in young leaves when temperature drops to 4–7 °C. Under direct sunlight with temperatures of 37–39 °C lasting for more than 2 days, young leaves can turn yellow on their edges. Its primary diseases include sooty mold, shoot tip blight, and peony leaf tip blight. Its primary insect pests are tea green leafhopper (Jacobiasca formosana) and tea aphid (Toxoptera aurantii). Rooting of stem cuttings occurs directly from stems, mostly without callus development. Two hours of treatment with 500 mg·L−1 indole-3-butyric acid and rooting in a mix of latosolic red soil and vermiculite (2:1 v/v) resulted in high rooting rate and quality of aboveground growth. Grafting can be carried out from May to September, while survival rate and new shoot length are highest in July. The most compatible rootstock is C. oleifera, followed by C. polyodonta. The results of this study are of value for understanding the reproductive biology of Camellia ‘Maozi’ and further disseminating it as a new cultivar for camellia collection.
Plants with the flower color phenotype of double-color flowers are very precious and attractive and can usually be regarded as valuable germplasm resources for studying and improving flower color. This paper summarizes the coloring mechanism of double-color flowers in plants from three aspects: the formation of double-color flowers, the physiological factors affecting the coloring difference of double-color flowers, and the molecular mechanism affecting the coloring difference of double-color flowers, to provide a theoretical reference for the in-depth study of the coloring mechanism and molecular breeding of double-color flowers in the future.
Apple replant disease (ARD) causes enormous economic loss and threatens the survival of apple industry worldwide. Fusarium solani is one of the pathogens that has been proven to cause ARD. Samples were collected at different time periods to investigate the mechanism of defense responses of apple to F. solani infection by monitoring the biomass, reactive oxygen species (ROS), and antioxidant enzyme activities of the apple rootstock ‘M.9T337’. In addition, the abundance of transcription of four pathogenesis-related (PR) proteins involved in antifungal defense was monitored. The results showed that the apple root system was normal and had small brown areas. However, there is a rapid burst of ROS during the early infection stage, and the activities of antioxidant enzymes and transcription of PRs increased during this period. With the extension in infection time, the infected root tissues displayed dark brown necrosis, and the activities of antioxidant enzymes and abundance of transcription of PRs decreased gradually after reaching their peak. Eventually, the plant biomass decreased, and the plant died. In conclusion, the levels of ROS and activities of antioxidant enzymes played an active role during the early stage of resistance of ‘M.9T337’ apples to infection by F. solani. Infection by F. solani can destroy the ROS scavenging system, causing oxidative damage and inhibiting the growth of apple rootstocks.
Lithocarpus polystachyus is a unique medicinal tree species that is valued for its abundant flavonoids in leaves. Currently, genes and metabolites involved in the flavonoid biosynthesis pathway remain largely unknown. To elucidate the flavonoid biosynthesis pathways, transcriptome and metabolome analyses of young, mature, and old leaves were conducted. A total of 86,927 unigenes were obtained, and 51.4% of them were annotated in eight public databases. The majority of the 44 candidate genes in the flavonoid biosynthesis pathway were downregulated as leaves aged. Metabolome profiling revealed a set of 427 metabolites in leaves. Consistent with the transcriptome results, 15 of the 19 metabolites in the flavonoid pathway decreased during the development of leaves. The data indicate that young leaf is the optimal stage for tea harvest. This is the first report of integrated transcriptome and metabolome profiling of L. polystachyus. This study demonstrates the correlation of gene expression and metabolites related to flavonoid biosynthesis and reveals the key genes responsible for flavonoid accumulation in young leaf. The information can be applied to future studies performed to elucidate and manipulate flavonoid biosynthesis in L. polystachyus.
Tree peony (Paeonia sp.) is a popular traditional ornamental plant in China. Among the nine wild species, Paeonia rockii displays wide-ranging, deep purple variegation at the base of the petals, whereas Paeonia ostii exhibits purely white petals. Overall, the posttranscriptional regulation involved in tree peony flower opening and pigmentation remains unclear. To identify potential microRNAs (miRNAs) involved in flower variegation, six small RNA libraries of P. ostii and P. rockii petals at three different opening stages were constructed and sequenced. Using Illumina-based sequencing, 22 conserved miRNAs and 27 novel miRNAs were identified in P. rockii and P. ostii petals. Seventeen miRNAs were differentially expressed during flower development, and several putative target genes of these miRNAs belonged to transcription factor families, such as Myb domain (MYB), and basic helix-loop-helix (bHLH) transcription factors. Furthermore, an integrative analysis of the expression profiles of miRNAs and their corresponding target genes revealed that variegation formation might be regulated by miR159c, miR168, miR396a, and novel_miR_05, which target the MYB transcription factors, chalcone synthase (CHS), and ABC transporter. Our preliminary study is the first report of miRNAs involved in Paeonia flower pigmentation. It provides insight regarding the molecular mechanisms underlying the regulation of flower pigmentation in tree peony.